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ABSTRACT 
 
The constitutive model in this paper addresses the influence of 
confinement on the compressive response in concrete structures, 
which is one issue when dealing with their compressive failure. The 
elasto-plastic model is based on the Drucker-Prager yield criterion 
having a confinement-sensitive hardening sub-model. To examine 
the predictive capacity of the model, it was applied to study a series 
of laboratory experiments where a number of concrete cylinders 
were exposed to an active confinement pressure. Furthermore, the 
model was used in a FE study of concrete-filled steel tubes, in which 
the state of stress is more complex and the confining stresses on the 
concrete core are induced by passive confinement provided by the 
steel tube. 
 
Key words: confined concrete, constitutive modeling, non-linear 
finite element analyses, concrete-filled steel tube. 

 
 
1. INTRODUCTION 
 
Concrete in compression is usually characterized with a stress-strain relationship obtained 
from uniaxial standard compression tests. However, most concrete structural elements are 
subjected to a multiaxial stress state. A uniaxial stress state represents only one of an infinite 
number of multiaxial stress conditions to which an element of concrete in a structure may be 
subjected throughout the loading history of the structure; see Kotsovos (1987). The response 
of concrete varies widely for different stress states and it is therefore important to know how 
the concrete behaves for different multiaxial stress states. As an example, Kotsovos shows the 
variation of the peak axial compressive stress sustained by a concrete cylinder with increasing 
confining pressure. It was noted that a small confining pressure of about 10 percent of the 
uniaxial cylinder compressive strength was sufficient to increase the load-bearing capacity of 
the specimen by as much as 50 percent.  
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A confinement-sensitive compression model to be used in FE analyses of concrete structures 
has been developed. Various methods of introducing confinement or pressure dependence 
have been proposed in the literature. One solution was reported by Malvar et al. (1997) where 
the compressive strength was made dependent on the hydrostatic pressure. Another way of 
dealing with the problem was suggested by Chen and Han (1987) who defined the plastic 
modulus as a function of the hydrostatic pressure through a modification factor. However, it is 
the authors’ opinion that in order to simulate the confinement dependence completely it is 
necessary to make both the strength and the plastic modulus dependent on the confinement. 
This way of introducing confinement sensitivity in both the strength and the plastic modulus 
is believed to be a novel feature. Furthermore, it is believed that the hydrostatic pressure is an 
unfortunate choice of controlling parameter as two different stress situations can share the 
same hydrostatic pressure. 
 
The proposed model is fundamentally an elasto-plastic model based on flow theory, i.e., it 
consists of a yield surface, a hardening rule, a yield law and reliance on the assumption of 
strain decomposition. What makes this model different from conventional elasto-plastic 
models is its capability to incorporate confinement into the integration of the internal state. It 
is a well-known fact that the response for a general stress situation cannot be captured with a 
conventional elasto-plastic model calibrated with only a limited set of strength data. That is, 
frequently used data for calibration of such models are a uniaxial stress-strain relation 
together with some factor giving the relation between uniaxial and biaxial compressive 
strength. With these data at hand, it is explicitly assumed that the hardening rate for all 
loading histories is the same. This is not the case, as can easily be observed by performing a 
numerical simulation of a situation outside the calibration data range. Such a simulation will 
reveal too soft behavior; see Figure 1. To resolve this discrepancy when simulating a general 
situation calls for a more complete set of material data. 
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Figure 1 – Typical difference of experimental and analysis result for confined concrete. 
 
The first section of this paper gives a brief description of the fundamental behavior and 
theories of confined concrete, for the cases of both active and passive confinement. The 
second section gives a description of the constitutive formulation of the model. Apart from 
the classical formulation, it consists of a discussion about the concept of confinement-
sensitive hardening. Further, the section includes a description of the application of this model 
and a verification of it. The last section shows an example of an application of the model in a 
study of concrete-filled steel tubes with some comments on the results. Finally, some remarks 
and conclusions are presented. 
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2. CONFINED CONCRETE 
 
2.1 Active confinement of plain concrete 
 
Richart et al. (1928) were the first to observe that confined concrete showed greatly increased 
maximum compressive strength, increased stiffness, and extended strain at which the peak 
stress was reached; see Figure 2. The concrete can sustain large deformation without 
substantial reduction of the load-bearing capacity and fails gradually in a ductile way. A 
number of experimental and theoretical studies on normal-strength concrete subjected to 
multiaxial states of stress have been performed, for example by Richart et al. (1928), Mills 
and Zimmerman (1970), Pantazopoulou (1995) and Imran and Pantazopoulou (1996). To 
consider the increased concrete strength due to confinement Richart et al. (1928) proposed the 
well-known empirical formula: 
 

latcocc kff σ+=  (1) 
 
where fcc is the axial compressive strength of concrete confined by the lateral stress σlat, fco is 
the uniaxial compressive strength of the concrete, and k is the so-called triaxial factor and is 
found to be 4.1. Although newer test results have suggested a modification of this relation, the 
basic approach for determining the confined strength remains the same. To calculate the axial 
compressive strain at peak stress εcc they also proposed the following equation: 
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where εco is axial compressive strain at peak uniaxial stress, β1 = 5 and β2 = 0.8. Using 
equation (1) it can be written as a function of the lateral confining pressure as: 
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Figure 2 – Schematic stress-strain relations for unconfined and confined concrete.  
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The experimental data for high-strength concrete under multiaxial states of stress are less 
extensive than those for normal-strength concrete. However, Attard et al. (1996) performed a 
test series of high-strength concrete subjected to low confining pressure and Ansari and Li 
(1998) carried out a comprehensive experimental program with high confining pressure, 
ranging up to 1.0fco. They found that the influence of confining pressure on the maximum 
compressive strength of high-strength concrete is not so pronounced as on that of normal-
strength concrete. According to Cederwall (1988), can the factor k in equation (1) be assigned 
a value of 3 to 4 for high-strength concrete. 
 
 
2.2 Passive confinement in concrete-filled steel tubes 
 
Triaxial stresses in concrete-filled steel tubes have been studied by several researchers, for 
example Gardner and Jacobson (1967), Tomii et al. (1977), Orito et al. (1987) and Schneider 
(1998). In a composite column consisting of a concrete-filled hollow steel section, 
compressive confining stresses on the concrete core are induced by passive confinement 
provided by the steel tube. In the case of passive confinement, the confining pressure is not 
constant as is the case for active confinement, and it also depends on the lateral deformation 
of the concrete core under axial load and the stress-strain relationship of the confining steel. 
However, it has been found that the concrete behavior is similar irrespective of whether the 
confining pressure is active or passive; see Attard et al. (1996). 
 
Short concrete-filled steel tubes concentrically loaded on the entire section are significantly 
affected by the difference between the values of Poisson’s ratio of the steel tube, νa, and the 
concrete core, νc. In the initial stage of loading, Poisson’s ratio of concrete is lower than for 
steel; therefore, the steel tube expands faster in the radial direction than the concrete core, i.e. 
the steel does not restrain the concrete core. As the load increases and the compressed 
concrete starts to plasticize, the lateral deformations of the concrete catch up with those of the 
steel and, for further increase in load, the steel tube restrains the concrete core and the hoop 
stresses in the steel become tensile (σah). At this stage and later, the concrete core is stressed 
triaxially and the steel tube biaxially; see Figure 3.  
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Figure 3 – Stress conditions in the steel tube and the concrete core. 
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From the equilibrium of the forces acting on the half tube, it is possible to establish a relation 
between the hoop tensile stresses σah and the internal pressure σr:  
 

ahr r
t σσ =  (4) 

 
where r and t are the radius and thickness of the steel tube, respectively. By setting σlat = σr 
and using equations (1) and (4), the ultimate compressive strength of the concrete core 
confined by a steel tube can now be calculated as: 
 

ahcocc r
tkff σ+=  (5) 

 
In equation (5) it can be observed that increased hoop tensile stresses in the steel tube give a 
higher compressive strength of the concrete. However, because of the presence of hoop 
tension, the steel tube cannot sustain the plastic resistance in the axial direction according to 
the von Mises yield criterion:  
 

222
yalahalah f=++ σσσσ  (6) 

 
where σal is the longitudinal compressive stress in the steel and fy is the yield strength of the 
steel. This means that when the circumferential tensile steel stress increases due to lateral 
deformations of the concrete core, the axial compressive steel stress has to decrease. 
 
When the load is applied only to the concrete section, the steel tube has a restraining effect on 
the concrete core as soon as lateral deformations of the core develop, and the confinement of 
the concrete core can be most pronounced. In this case, any bond at the steel-concrete 
interface induces longitudinal compression in the steel tube; i.e. the behavior is influenced by 
the bond strength. However, when the load is applied to the entire section the bond strength 
has no or little influence on structural behavior because there is no relative movement 
between the concrete core and the steel tube.  
 
The total load on the stub column can normally be written as the sum of the contributions 
from the concrete and the steel: 
 

aalcahcocalacalccal AA
r
tkfPPP σσ ++=+= )(,,   (7) 

 
where Ac and Aa are the areas of the concrete core and steel tube, respectively. Assuming that 
the steel is yielding when the concrete fails, it is possible to find two extreme bounds for the 
load resistance. The lower bound is obtained by assuming the axial steel stress equal to the 
yielding stress (σal = fy) and the circumferential steel stress equal to zero (σah = 0). The upper 
bound, known as the Lohr principle (Lohr 1934), is instead obtained with the steel only acting 
as an encasement, i.e. setting the axial steel stress equal to zero (σal = 0) and the 
circumferential steel stress equal to the yielding stress (σah = fy). However, in practice the real 
situation will be somewhere inbetween and the stress pattern in the structure can be very 
complex.  
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3. CONFINEMENT-SENSITIVE CONCRETE COMPRESSION MODEL 
 
3.1 Constitutive formulation 
 
The material model designed for modeling concrete crushing is fundamentally a classical 
elasto-plastic model, but it is extended to include a confinement-sensitive hardening behavior 
by means of two adjustment functions connected to the strength and the plastic modulus. The 
underlying model was chosen as the Drucker-Prager model with associative evolution laws, 
see Chen and Han (1987). Figure 4 shows the yield surface in the principal stress space. This 
was a choice guided by the aim of just demonstrating a principle for introducing the 
confinement sensitivity into the constitutive formulation, but also guided by the fact that the 
main contributing factor for capturing the confinement sensitivity is given by the hardening 
rule. That is, the shape of the yield surface only comes into play at onset of yielding and its 
contribution to the response is not as dominant as the effect of the hardening rule. Another 
factor affecting the choice of underlying plastic model, though less important, was the ability 
to produce correct and efficient numerical algorithms for integrating the state. With this 
model, it is also simple to establish the algorithmic tangent stiffness tensor at a low 
computational cost, which is a major concern when dealing with implementation issues. 
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Figure 4 – The Drucker-Prager yield surface in the principal stress space. 
 
The yield surface for the Drucker-Prager model is a linear function in both the deviatoric 
stress q and the hydrostatic pressure p: 
 
 ( ) 0tan, =−+= KpqKF ασ  (8) 
 
where K is the strength representing the cohesion and α is the frictional angle. The hydrostatic 
pressure is defined as: 
 

 Ισ :
3
1−=p  (9) 

 
where σ  is the stress tensor and Ι  is the unit tensor. The deviatoric stress is defined as: 
 

 ( )SS :
3
2=q , (10) 

 
where S is the deviator stress tensor, defined as: 
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 IσS p+= . (11) 
 
The next component in the model is the flow rule, expressing the evolution of plastic strains:  
 














+=

∂
∂=

∂
∂= δδδδεεεε

3
tan

2
3 αλλλ

S
S

σσ
dFdQdd p  (12) 

 
where λd  is the plastic multiplier and δδδδ is the Kronecker delta. Relation (12) is called the 
associated flow rule because the plastic flow potential function Q  is associated with the yield 
criterion ( FQ = ); see Chen and Han (1987). Although it is common practice to use a non-
associative flow rule ( FQ ≠ ) when modeling concrete crushing, again with the aim of 
investigating a principle, associativity was chosen for the sake of simplicity. The last 
component of the model, also associative, is the hardening rule, which consists of two parts 
describing the evolution of the hardening parameter and the strength hardening parameter 
dependence, i.e. 
 

λλκ d
K
Fdd −=

∂
∂=   and  λHdK −=  (13) 

 
where H is the isotropic hardening modulus. Introduction of a confinement dependence on 
both the hardening parameter and the strength will also make the plastic modulus a function 
of the confinement. What would be desirable would be to introduce a hyper-surface defined 
by the three principal stress components and the hardening parameter describing the material 
strength. This would make it possible to have smooth transitions between different 
confinement situations. However, this requires that there exists such a surface and from a 
numerical point of view that it must be reasonably simple in its definition. 
 
It can be argued that a non-associative yield law and a proper yield criterion can be used for 
achieving the same effect as a confinement-sensitive hardening rule. By just using a non-
associative yield law together with a linear yield criterion, the only effect will be a translation 
of the response curve, keeping the same tendency for different confinement situations. On the 
other hand, by using a more complex yield criterion in combination with an associative yield 
law, the dominant effect will simply be a better simulation of onset of crushing. To find the 
right combination of a non-associative yield law and a complex enough yield criterion seems 
to be an impossible task; hence, it is a much more straightforward solution to resort to the 
proposed approach with a confinement-sensitive hardening rule. 
 
The method chosen to introduce the confinement dependence into the hardening sub-model is 
by means of two adjustment functions f and g. These two functions are defined as 
polynomials of arbitrary power, i.e.  
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The first function scales the strength K according to the current confinement while the second 
function scales the hardening parameter κ; see Figure 5. In equations (14a) and (14b) the 
constants ia  and ib  have to be calibrated from pertinent test data. That is, the confinement 
influence varies depending on what concrete quality used. With these two adjustment 
functions, an approximation of the “true” strength hyper-surface is achieved.  
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Figure 5 – Strength scaling (a), hardening parameter scaling (b) and resulting confined 
strength-hardening parameter relation (c). 
 
The confinement value σlat in an element is taken as the mean value of the two smallest 
principal stresses under the condition that it is compressive –otherwise it is set equal to zero; 
see Figure 6. This restriction is due to uncertainties of how the compressive strength is 
influenced by transverse tensile stresses. Before the model can be extended to include this 
situation, further experimental investigation has to be done. 
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Figure 6 – Definition of stress state in an element when the confinement value is calculated. 
 
To reach a broader public, the model has been implemented in ABAQUS/Standard. Although 
ABAQUS only offers a Fortran interface for user-defined material models a choice of using 
the programming language C++ was made; for reference see Lippman (1991). By using C++, 
it was possible to implement the model in terms of an object-oriented approach, which makes 
it possible to combine a well-structured code with numerical robustness and efficiency. 
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3.2 Application and verification 
 
To exemplify the application and verify the confinement-sensitive compression model, an 
experimental series performed by Imran and Pantazopoulou (1996) was used. In total the 
experimental series consisted of 130 triaxial tests where the influence of confinement, loading 
path and moisture content on the stress-strain relation was examined. In this study a part 
consisting of 42 specimens were chosen to be used in the verification of the material model. 
The test specimens were of cylindrical shape with a height of 108 mm and a diameter of 54 
mm. The peak strength, fcc, and the corresponding strain, εcc, at given lateral confinement 
were recorded from the test results and compared with the values calculated according to 
equations (1) and (3); see Figure 7.  
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Figure 7 – Comparison of measured and calculated values for (a) the peak strength fcc and 

(b) the corresponding strain εcc. 
 
It can be observed that there are rather good agreements between the measured and calculated 
results for both the strength and the strain. Hence, in absence of triaxial tests it is possible to 
use the equations in order to derive the two scaling functions used in the material model. 
However, triaxial tests are more reliable and should be used if possible. 
 
Instead of a relation between stress and strain for the uniaxial behavior, the confinement-
sensitive compression model uses a relation between the cohesion and the hardening 
parameter. The cohesion is calculated as: 
 

)
3

tan1)(( αεσ −= p
cK  (15) 

 
where σc(ε p) is the compressive stress as a function of the plastic strain, ε p, in the direction of 
the uniaxial stress. The plastic strain is recalculated into the hardening parameter as: 
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The stress-strain relation can be determined by standard uniaxial tests on concrete cylinders. 
However, it is often not possible to record the stress-strain relation after the maximum 
strength is reached. Therefore, the post-peak behavior of the concrete can be derived 
according to the recommendations in CEB-FIP Model Code, CEB-FIP (1993) or CEB 
Bulletin d'Information 228 (1995). In absence of material tests, the entire stress-strain relation 
can be derived according to these models. To derive the strength scaling function, f(σlat), the 
peak cohesion, Kmax, is calculated for a number of values of the lateral confinement, σlat, 
according to:  
 

)
3

tan21()
3

tan1(max
ασα +−−= latccfK  (17) 

 
The function simply describes the increase of cohesion with changes in lateral confinement. 
Correspondingly, the hardening parameter scaling function, g(σlat), is derived from the 
hardening parameter corresponding to the peak cohesion, κmax, for a given lateral confinement 
and calculated as: 
 

)
3
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tan1(
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−
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latcc
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cc
cccc

f

E
ff

 (18) 

 
The values of fcc and εcc correspond to a specific value of σlat, and are either taken from 
triaxial material tests or calculated according to equations (1) and (3), respectively. 
 
To investigate the predictive capacity of the constitutive model in simulating the response 
under various confinement situations, a set of numerical analyses were carried out simulating 
the experimental series performed by Imran and Pantazopoulou (1996). Out of this vast 
material, a test series with fc,cyl = 43.5 MPa was chosen. For this sub-series, seven different 
levels of confinement were applied. The peak strength, fcc, and the corresponding strain, εcc, 
recorded from the seven stress-strain relations obtained in the tests are given in Table 1, and 
corresponding cohesion and hardening parameters were calculated according to equations 
(17) and (18). 
 
Table 1 – Investigated experimental series. 

Measured Calculated FEA Lateral 
confinement, σlat 

[MPa] 
fcc 

[MPa] 
εcc 
[%] 

fcc eq. (1) 
[MPa] 

εcc eq. (3) 
[%] 

fcc 
[MPa] 

εcc 
[%] 

0.0 43.1 0.25 43.1 0.25 42.8 0.23 
2.2 46.0 0.43 51.9 0.51 50.4 0.46 
4.3 53.5 0.65 60.7 0.76 58.5 0.76 
8.6 73.0 1.66 78.4 1.27 74.3 1.80 

17.2 107.0 2.81 114.0 2.29 105.8 2.81 
30.1 149.3 4.23 167.0 3.83 153.0 4.30 
43.0 184.2 5.02 219.0 5.36 198.3 5.00 
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In Figure 8 the obtained values of the cohesion and hardening parameter are plotted against 
the level of confinement. The values are normalized with respect to maximum values obtained 
in uniaxial compression, i.e. zero confinement. Also the derived scaling functions for the 
cohesion and the hardening parameter are shown. Both scaling functions are chosen to be 
represented by a linear relation. For comparison the results obtained by using equations (1) 
and (3) to calculate fcc and εcc are also given in Table 1 and Figure 8. 
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Figure 8 – The normalized values of (a) cohesion and (b) hardening parameter plotted 

against the level of confinement. 
 
The results from the comparative FE analyses are shown in Figures 9 to 12 where the axial 
stress is plotted against the total axial strain. The peak strength, fcc, and the corresponding 
strain, εcc, obtained in the FE analyses are compared with the test results in Table 1. As can be 
seen, the correspondence between the numerical results and the experimental data is fairly 
good. However, this is perhaps not surprising since it is a simple problem regarding both 
geometry and response.  
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Figure 9 – Results for confinement 0.0 MPa (uniaxial) and the concrete cylinder specimen 

with a height of 108 mm and a diameter of 54 mm. 
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Figure 10 – Results for confinement 2.2 MPa and 4.3 MPa respectively. 
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Figure 11 – Results for confinement 8.6 MPa and 17.2 MPa respectively. 
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Figure 12 – Results for confinement 30.1 MPa and 43.0 MPa respectively. 
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4. STUDY OF CONCRETE-FILLED STEEL TUBES 
 
4.1 Experiment 
 
The emphasis of this paper is non-linear finite element analyses and application of the new 
confinement-sensitive concrete compressive model described in section 3; therefore, the tests 
are only briefly described. More detailed information about the tests can be found in 
Johansson (2000). The experimental study consisted of 13 short stub columns with the length 
of 650 mm and circular cross sections with a 159 mm outer diameter. The thickness of the 
steel tubes was 4.8 mm. Nine columns were circular hollow steel sections filled with concrete, 
while four columns, which were to be used as reference columns, were tested unfilled. The 
load was applied concentrically to the concrete section, to the steel section or to the entire 
section. Since no effect of increased concrete strength due to confinement is achieved when 
the load is applied only to the steel section, this loading situation will not be further discussed. 
The average values of the material properties of the concrete and the steel are summarized in 
Tables 2 and 3. These values are also used in the following FE analyses. 
 
Table 2 – Material properties of the concrete at the age of 28 days. 

fc,cube 
[MPa] 

 

fc,cyl 
[MPa] 

 

εco 

[‰] 
Ec 

[GPa] 
 

GF 
[N/m] 

 

79.4 64.5 3.0 38.5 157 
 
 
Table 3 – Material properties of the steel. 

fy 
[MPa] 

 

fu 
[MPa] 

 

εah 
[‰] 

 

εau 
[‰] 

 

Ea 
[GPa] 

 

433 568 29 136 206 
 
 
4.2 Finite element analysis 
 
An established FE model should be able to simulate the columns in a realistic way; such 
phenomena as the bond between the concrete core and the steel tube, and the increase in 
concrete compressive strength due to confining effects, have to be taken into account. The 
non-linear finite element analyses were made with ABAQUS/Standard 5.7; see HKS (1997). 
Three symmetry planes were used and only one eighth of the column was modeled since the 
same concentric load was applied in the same way at both ends; see Figure 13. The steel tube, 
the concrete core and the loading plates had to be separated from each other to simulate the 
bond between them: therefore they were defined as individual bodies using a three-
dimensional finite element model based on solid elements. The confinement-sensitive 
compression model described in section 3 was used to model the concrete. The uniaxial 
stress-strain relations in compression, used in the analyses, were derived from standard 
cylinder tests with concrete from the same batch as the columns; see Table 2. In these tests the 
stress-strain relation could be recorded only up to the maximum stress. The remaining part of 
the stress-strain relation was determined in accordance with the CEB Bulletin d'Information 
228 (1995). The relation between the cohesion and the hardening parameter was calculated 
according to equations (15) and (16). The scaling functions for the cohesion and the hardening 
parameter are represented by linear relations; see Figure 14. 
 



 

 

14

 

Symmetry 
plane 

Loading 
plate 

 P  P 

(a) (b) 

Center 
node 

 

 8-node steel 
element 

8-node concrete 
element 

6-node concrete 
element 

(c) 
 

 
Figure 13 – The FE model: load on (a) concrete section and (b) entire section. The section of 

the columns in the FE model (c). 
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Figure 14 – The normalized values of (a) cohesion and (b) hardening parameter plotted 

against the level of confinement. (The results for k = 4.1 are shown only for 
comparison.) 

 
The values for fcc and εcc were calculated using equations (1) and (3) and corresponding 
values of Kmax and κmax according to equations (17) and (18), respectively. The triaxial factor 
k was set to 3.0 and the friction angle α to 30°. Poisson's ratio for the concrete in the elastic 
part was approximated as νc = 0.2. 
 
An elastic-plastic model, with the von Mises yield criterion, associated flow rule and isotropic 
strain hardening, was used to describe the constitutive behavior of the steel; see HKS (1997). 
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The complete stress-strain relation obtained from uniaxial tensile tests on specimens taken 
from the steel tubes was used in the FE analyses. Poisson's ratio in the elastic part was set to 
νa = 0.3. To simulate the bond between the steel tube and the concrete core, surface-based 
interaction with a contact pressure-overclosure model in the normal direction, and a Coulomb 
friction model in the directions tangential to the surface, were used. In this way the surfaces 
could separate and slide relative to each other, as well as transmit contact pressure and shear 
stresses between the concrete core and the steel tube. According to Baltay and Gjelsvik (1990) 
the coefficient of friction, µ, between concrete and steel has a value between 0.2 and 0.6. The 
load was applied as an increased deformation at the center node of the loading plate to model 
the load of the structure. To distribute the load, all other nodes at the top surface of the 
loading plate were forced to have the same vertical translation as the center node. The 
Newton-Raphson iteration method was used to find equilibrium within each load increment. 
Furthermore, the geometric non-linear behavior, i.e. the local buckling of the steel tube, was 
taken into consideration. 
 
 
4.3 Results and discussion 
 
To verify the FE model, a comparison of the load-deformation relationships obtained from 
tests and those obtained in the FE analyses was made; see Figure 15. When the load was 
applied only to the concrete section (SFC) the best agreement was obtained when a coefficient 
of friction of 0.6 was used. Furthermore, as expected for this loading situation, the load 
resistance increases and the stiffness decreases with a lower value on the coefficient of 
friction. For the columns with the load applied to the entire section (SFE) a changed value of 
coefficient of friction did not affect the structural behavior. These observations are also 
according to what should be expected; see section 2.2. For the SFE column the maximum 
obtained concrete strength is approximately 1.3fc,cyl and for the SFC column it depends on the 
coefficient of friction and varies from 1.3fc,cyl up to 2.2fc,cyl when µ is 1.0 and 0.0, 
respectively. As a further comparison the upper and lower bounds calculated according to 
equation (7) are shown in Figure 15. It can be observed that the load resistance of all columns 
falls within these two bounds. In absence of bond strength (µ = 0.0) between the steel and the 
concrete with the load applied only to the concrete section, there will be no axial stresses 
(σal = 0) in the steel tube and the tube is only used as lateral confinement of the concrete core. 
Hence, as can also be seen in Figure 15a, this situation corresponds well with the upper 
bound. 
 
Figure 16 shows how the total axial load is distributed between the steel tube and the concrete 
core at the midsection of the SFC and SFE columns, when the coefficient of friction is set to 
0.6. Although the structural behavior is approximately the same for both the SFE and SFC 
columns, it can be observed, when comparing the distribution of the axial force during 
loading, that there are differences in how the load is carried in the columns. In the former, the 
concrete core and the steel tube are loaded simultaneously; consequently, the load is already 
distributed from the beginning of the loading; see Figure 16b. In the SFC column, though, the 
concrete core carries almost the entire load in the initial stage of the loading. As the total load 
is increased, the concrete core expands in the lateral direction, and contact pressure and shear 
stresses develop between the concrete and the steel; hence the force carried by the steel tube 
increases; see Figure 16a. Further, this results in a lower stiffness for the SFC column than for 
the SFE column where the steel contributes to carrying load from the beginning. 
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Figure 15 – Comparison of results of FE analyses and tests. Load (a) on concrete section and 

(b) on entire section. 
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Figure 16 – Distribution of the axial force between concrete and the steel in the midsection of 

(a) the SFC and (b) the SFE column (µ = 0.6). 
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Figure 17 shows how the stresses (σal, σah and σat; see also Figure 18) in a steel element, in 
the midsection of the SFC and SFE columns, vary during the loading (σat is the steel stress 
perpendicular to σal and σah). Also the lateral confinement pressure σlat is shown, calculated 
from circumferential steel stress according to equation (5) (observe different scale). First, it 
can be noticed that the assumption of biaxial state of stress in the steel tube is true, since there 
is no stress over the thickness of the steel tube, i.e. σat = 0. Further, for the SFE column it can 
clearly be seen that there exists no circumferential steel stress before a vertical deformation of 
approximately 1.2 mm, when the lateral deformations of the concrete core catch up with those 
of the steel and a contact pressure is introduced. It can also be observed that because of the 
presence of circumferential steel stress, the yield strength is not reached in compression; and 
due to increasing circumferential steel stress, the axial steel stress decreases after the 
maximum stress is obtained; see Figure 17.  
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Figure 17 – The stresses for a steel element in the midsection of (a) the SFC and (b) the SFE 

column (µ = 0.6). 
 
This effect is even more clear in Figure 18 where the stress path for the steel element of the 
SFC (µ = 0.0, 0.2, 0.6 and 1.0) and SFE columns (µ = 0.6) is shown, i.e. the relation between 
σal and σah. As long as no hardening of the steel is obtained, this stress path can never go 
outside of the von Mises yield curve (see equation (6)); consequently the axial compressive 
steel stress has to decrease when the circumferential tensile steel stress increases. For the SFC 
column it is possible to see how the coefficient of friction affects the mechanical behavior of 
the steel tube, by means of the axial to circumferential steel stress ratio. For the higher value 
(µ = 1.0) the steel tube is mainly subjected to compressive stresses in the axial direction. 
Meanwhile, in absence of friction (µ = 0.0) only circumferential tensile stresses are present, 
thus, the steel tube is used only to provide lateral confinement of the concrete core. The latter 
situation provides the most effective use of the materials; however, it is hard to realize in 
practical use. For the SFE column, the ratio between axial and circumferential steel stresses is 
the same independently of the coefficient of friction. 
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Figure 18 – The stress path for a steel element in the midsection of the SFC (µ = 0.0, 0.2, 0.6 

and 1.0) and SFE columns (µ = 0.6). 
 
If the steel stresses (σal and σah) at the ultimate load obtained in the FE analyses (see Figure 
17) are used in equation (7), it is possible to calculate the “theoretical” value of the ultimate 
load resistance Pu,cal and its components Pa,cal and Pc,cal. In Figure 16 these values are 
compared with the results obtained from the FE analyses and it can be seen that there is rather 
good agreement. However, the problem with using only the theoretical expression still 
remains, because it is necessary to know the relation between σal and σah, which is hard to 
find without the FE analyses. This relation depends on the ratio of concrete to steel areas as 
well as the strength of the two materials. To be able to estimate the resistance and deformation 
capacity of a concrete-filled steel tube section, it is necessary to know how σal (i.e. the 
confinement pressure on the concrete core) and σah develops during loading. Therefore, a 
simple analytical model that takes this into account needs to be developed.  
 
Although the correspondence up to the load resistance between the numerical and 
experimental results is fairly good, and the structural behavior of the columns is in agreement 
with theories and previous studies, the post-peak behavior of the columns is not captured 
satisfactorily. To overcome this problem, not only the strength and hardening parameter needs 
to be confinement-sensitive; also the shape of the descending branch of the concrete 
stress-strain relationship should depend on the confinement stress level, i.e. increased 
confinement should give a more ductile behavior of the concrete; see Figure 2. 
 
 
5. CONCLUSIONS 
 
An object-oriented implementation of a confinement-sensitive compression model using the 
programming language C++ was presented. The confinement sensitivity affected both the 
strength and the hardening parameter and thereby also the plastic modulus. The confinement 
dependence is introduced by means of two adjustment functions, which can be derived either 
from triaxial material tests or by the presented theoretical expressions. The applicability of the 
model was shown in an example. Here results from the model were compared with 
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experimental data from triaxial compression tests on concrete cylinders exposed to an active 
confinement pressure. The results showed that the model was capable, in an acceptable way, 
of reproducing the experimental data.  
 
Furthermore, the model was used in a finite element study of composite columns consisting of 
concrete-filled steel tubes. There is a rather good correspondence up to the load resistance 
between the numerical and experimental results. Hence, the model is able to simulate the 
confining effects on the concrete also when the confining pressure is changing during the load 
history, i.e. passive confinement. Since the shape of the descending branch of the concrete 
stress-strain relationship is not confinement-sensitive, the post-peak behavior of the 
composite columns was not captured adequately. For the columns with the load applied to the 
entire section, the bond strength did not affect the structural behavior. However, when the 
load is applied only to the concrete section the load resistance increases and the stiffness 
decreases with lower bond strength.  
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