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ABSTRACT 

The aim of this work is to calculate partial coefficients for thermal 
cracking problems of young concrete and to compare the results 
with the values stated in the Swedish building code for bridges, 
[1]. The code values are only based on experiences and logical 
reasoning, whereas the calculated values form a more theoretical 
base for their determination. The coefficients are calculated with a 
probabilistic method. Various different possible variations of the 
used variables have been studied showing the wide range of possi-
ble results depending on the input. However, with use of material 
properties and reasonable assumptions related to thermal cracking 
problems, fairly good agreement has been found between the 
stated values in the Swedish code [1] and the values obtained 
through the probabilistic method. 

The calculated values are based on many assumptions and as-
sumed values and should therefor not be seen as what is right but 
rather more as an indication on the reasonableness of the values 
stated in the Swedish code. Further investigations, calculations and 
judgements should be performed before wider conclusions can be 
drawn. 
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1 INTRODUCTION 

A structure or a structural member should be designed in such a way that safety and serviceabil-
ity are always maintained. This means that no relevant limit state conditions should be exceeded 
with an in beforehand determined probability. For young concrete structures it is important to 
prevent surface and through cracks due to e.g. temperature and/or temperature gradients during 
the hydration phase. Such cracks do not affect the total bearing capacity of a structure, the 
safety, but can influence the aesthetics and cause leakage and durability problems, the service-
ability, and must be taken care of by e.g. injection. 

The risk of thermal cracking in young concrete structures is commonly estimated as the ratio 
between the calculated maximum tensile stress and the actual tensile strength. Alternatively, the 
ratio between the calculated maximum tensile strain and the actual ultimate tensile strain is used, 
which will be the case here. If a determined ratio is smaller than a so-called crack safety value, a 
structure is assumed to fulfil the requirements of no thermal cracking. Depending on the effects 
of cracking and the accuracy in determining material properties, the Swedish building codes for 
bridges, [1], states different crack safety values as measures of the risk of cracking. 

The risk of cracking due to temperature and temperature gradients can be estimated, according 
to [1], in three different methods. In Method 1 certain demands are specified on i.e. the casting 
and the air temperatures, the maximum cement content and the minimum value of the water 
cement ratio. Demands are also stated on the thickness and height of the structural members, the 
casting length, and when form stripping is allowed. In Method 2 and Method 3, which is more 
elaborate, certain values of the crack safety are prescribed depending on the accuracy in the de-
termination of material data. Method 2 implies that requirements in a certain handbook, [2], 
should be applied. The requirements have been established by numerous thermal stress analyses. 
Further, material data that should be used are given in the code. In Method 3, the risk of crack-
ing is estimated very accurately with tried and documented computer software and material 
properties. 

The risk of cracking should not be larger than the crack safety values given in Table 1. The envi-
ronmental classes referred according to [1] in the legend of the first column are according to the 
Swedish building code for concrete, [3]. Environmental class A2 stands for “Moderately rein-
forcement aggressive”, class A3 stands for “Very reinforcement aggressive” and class A4 stands 
for “Extremely reinforcement aggressive”, further see Section 4.2. 

Table 1. Crack safety values for Method 2 and Method 3 given in [1]. For Method 2 values from 
the two right columns are used where C is the cement content [kg/m3]. Environmental class A2 
stands for “Moderately reinforcement aggressive”, class A3 stands for “Very reinforcement 
aggressive” and class A4 stands for “Extremely reinforcement aggressive”. 

 Method 3 Method 2 
Environm. Complete  Material data given in the code 

class material data 360≤C≤430kg/m3 430≤C≤460kg/m3 

A2 1.11 1.25 1.42 
A3 1.18 1.33 1.54 
A4 1.25 1.42 1.67 
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The crack safety values can be referred to what usually are called partial coefficients based on 
probabilistic methods, see e.g. [4], [5], [6], [7] and [8]. Determination of partial coefficients will 
be presented here. Further, a determination of partial coefficients, that is crack safety values, for 
thermal cracking problems will follow as an attempt to indicate the reasonableness in the values 
given in [1]. The method and the results are more thoroughly presented and described in [8]. 
The determination is based on material properties, assumption on load situations and other con-
ditions typical for thermal cracking problems.  

2 PARTIAL COEFFICIENTS 

2.1 Limit state function and safety index 

The safety against failure can be estimated by a limit state condition in terms of a resistance pa-
rameter r and a stress parameter s. The limit state condition, Θ(⋅), can be expressed as the resis-
tance parameter r reduced by the stress parameter s as 

 ( ) 0Θ ⋅ = − ≥r s  (1) 

Usually, the resistance parameter r is the material strength and the load parameter s is the 
stresses caused by acting loads. Depending on their relative size, the limit state condition is not 
exceeded if the resistance is larger than or equal to the stress, r ≥ s, and it is exceeded if the re-
sistance is smaller than the stress, r < s. 

The two parameters are regarded as two normally distributed stochastic variables with given 
probability density functions, fr(r) and fs(s), see Figure 1a). From the presumption that the resis-
tance parameter r and the stress parameter s are stochastic variables, the limit state condition is 
also a stochastic variable. Assuming the resistance parameter r and the stress parameter s being 
normally distributed also the limit state condition Θ is normally distributed with a probability 
density function fΘ(Θ), Figure 1b), where β is the so-called safety index. 

µs µr

r,s

y
y=fs(s) y=fr(r)

a)

µΘ

fΘ(Θ)

pf[Θ<0]
Θ=r-s

0
βσΘ

y=fΘ(Θ)

b)

 
Figure 1. a) Probability density functions for the stress parameter, fs(s), and the resistance pa-
rameter, fr(r), b) Probability density function for the limit state condition Θ, fΘ(Θ). 

The probability of exceeding a limit state condition, pf[Θ = r-s < 0], is equal to the area of the 
shaded surface in Figure 1b). In the figure, the distance, with the standard deviation σΘ as unit, 
from the mean value µΘ to the failure limit, Θ = 0, is written as βσΘ. The coefficient β is the so-
called safety index, introduced by Cornell in [9], and is, according to the figure, determined as 
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 Θ

Θ

µβ =
σ

 (2) 

How much larger the resistance r should be than the stress s is often specified in building codes 
in different safety classes and through specified values of the safety index β. The safety index β 
is defined by a formal probability of failure, that is, of exceeding the limit sate condition. The 
safety index β is often coupled to safety classes in building codes, see e.g. [6], [7], [10]. If the 
risk of human injuries is low, often referred to safety class 1, the probability of failure is pf = 10-

4 and the safety index β = 3.72. The same principle applies to safety classes 2 and 3, see Table 2. 

Table 2. Correspondence between safety class, safety index and probability of failure, [1], [10]. 

Safety class 1 2 3 

Safety index β 3.72 4.26 4.75 
Probability of failure, pf 10-4 10-5 10-6 

2.2 Partial coefficients 

The partial coefficient method is based on characteristic values and partial coefficients for veri-
fication that prescribed safety requirements are fulfilled. Generally, for the limit state condition 
in Eq. (1), partial coefficients are used as follows 

 0Θ = − = − γ ≥
γ

c
d d s c

r

rr s s  (3) 

where d indicates design values, c indicates characteristic values and γr and γs are the partial 
coefficients for the resistance parameter r and the stress parameter s, respectively. 

For the risk of thermal cracking of young concrete, the crack safety values in Table 1 are the 
product of the partial coefficients for the resistance parameter r and the stress parameter s, γrγs, 
according to, compare with Eq. (3), 

 c
r s

c

r
s

≥ γ γ  (4) 

In this case, all partial coefficients have been collected in one coefficient limiting the ratio be-
tween the resistance parameter and the load parameter. 

3 THE PROBABILISTIC METHOD 

3.1 Equations for determination of partial coefficients 

A method further referred to as the probabilistic method will be used to determine alternative 
values of the partial coefficients, safety values, for thermal cracking problems, given in Table 1. 
The method has the advantage of being consequent but it also includes many approximations. 



5 

 

The results can therefore not be used directly without additional judgements. The following de-
termination of the partial coefficients will be formulated in terms of strains. The procedure in 
general is based on a method presented by Lars Östlund in [11], reprinted in [12], and adopted 
on thermal cracking problems in [8]. As design condition with partial coefficients for thermal 
cracking problems, Eq. (4) will be used as the limit state condition. 

3.1.1 Resistance parameter 
The resistance parameter r is expressed as, [11] 

 rr C a= ρε  (5) 

where Cr is a factor describing uncertainties in the calculation method on the resistance parame-
ter such as determination of material properties. Cr is a stochastic variable with mean µCr and 
coefficient of variation VCr. a is a geometric quantity (eg cross-section area). a is a stochastic 
variable with mean µa and coefficient of variation Va. ρ is a factor transferring concrete strain 
from test specimen at failure to concrete strain in real structures. ρ is a stochastic variable with 
mean µρ and coefficient of variation Vρ. ε is the actual concrete ultimate strain. ε is a stochastic 
variable with mean µε and coefficient of variation Vε. The stochastic variables r, Cr, a, ρ and ε 
are assumed to be logarithmic normally distributed. 

The mean value of the resistance parameter is 

 r Cr a ρ εµ = µ µ µ µ  (6) 

and the coefficient of variation, if terms of higher order are neglected, 

 2 2 2 2
r Cr aV V V V Vρ ε≈ + + +  (7) 

Eq. (5) divided by Eq. (6) gives, if using characteristic values, 

 c rc c c c

r Cr a

r C a

ρ ε

ρ ε=
µ µ µ µ µ

 (8) 

which will be used further on in the final calculation of the partial coefficients, see Eq. (25) be-
low. 

3.1.2 Load parameter 
The load parameter s for thermal cracking problems can be formulated, in terms of strains, as 

 1 2( ( ) )s R T T shs C b c= γ ε + ε + ε  

where Cs is uncertainties in the calculation method on the load parameter and is assumed to have 
the same value for all the loads. Cs describes uncertainties in the determination of the strains by 
e.g. manual methods, see [13] and [14], or by finite element calculations, see [15]. Cs is a sto-
chastic variable with mean µCs and coefficient of variation VCs. γR is the coefficient of restraint 
and is a deterministic coefficient, 0 ≤ γR ≤ 1. For further explanations and the determination of 
the coefficient of restraint, see [8]. εT1 is the non-elastic strain of volume changes from differ-
ences between the casting temperature and the adjacent temperature. εT2 is the non-elastic strain 
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of volume changes from differences between the maximum temperature and the casting tem-
perature. Below, the temperature-induced strains are combined into one parameter, εT, which is 
a stochastic variable with mean µT and coefficient of variation VT. εsh is the strain of volume 
changes from shrinkage and is a stochastic variable with mean µsh and coefficient of variation 
Vsh. b and c are both deterministic coefficients, 0 ≤ b and 0 ≤ c. The stochastic variables εT and 
εsh are assumed to be normally distributed. The deterministic coefficients b and c are used when 
either the temperature induced strain is of greater importance than the shrinkage strain, or the 
opposite. Now, the load parameter is 

 ( )s R T shs C b c= γ ε + ε  (9) 

The variables are put together so that the mean value of the stress parameter is 

 ( )s R T shb cµ = γ µ + µ  (10) 

By introducing the following relation 

 2 2;   r
C Cr Cs

s

C C V V VC = = +  (11) 

the limit state condition is simplified to 

 ( ) ( )R T shCa b cΘ ⋅ = ρε − γ ε + ε  (12) 

In the calculation of the partial coefficients for thermal cracking problems of concrete, it is very 
difficult to give any absolute values of the mean values of the strains of shrinkage and tempera-
ture changes. However, the relation between them is easier to estimate. Therefore, a coefficient 
νsh is introduced stating the ratio between the mean values of the strains of shrinkage and of the 
temperature change 

 sh
sh

T

c
b
µν =
µ

 (13) 

3.1.3 Design condition 
When calculating partial coefficients by the probabilistic method, the following design values 
and help values κ are used for the stochastic variables r, εT and εsh. 

 exp( )d r r r r d rr V r V= µ −α β κ =  (14) 

 ( ), 1T d T T T T R T TV b Vε = µ − α β κ = − γ µ  (15) 

 ( ), 1sh d sh sh sh sh R sh shV c Vε = µ − α β κ = − γ µ  (16) 

When using design values in Eq. (3), the equal sign is valid, which together with Eq. (9) gives 

 , , 0d R T d R sh dr b c− γ ε − γ ε =  (17) 

In the expressions above, α are so-called sensitivity coefficients determined as 
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2 2 2 2

;    with ,   and i i
i

i r T sh

i r T shκ κα = = =
Σκ κ + κ + κ

 (18) 

and that must fulfil the condition 

 2 2 2 1r T shα + α + α =  (19) 

The sensitivity coefficients take values between -1 and 1 and are positive for favourable factors, 
the resistance parameters, and negative for unfavourable, the load/stress parameters. The larger 
the coefficient is, the larger the importance of the uncertainty is in the corresponding variable. 

cµsh = νshbµT according to Eq. (13) and design values according to Eqs. (14) to (16) inserted in 
Eq. (17) give 

 ( ) ( )exp( ) 1 1 0r
r r T T sh sh sh

R T
V V V

b
µ −α β − − α β − ν − α β =

γ µ
 (20) 

By introducing the help variables 

 r

R T
Z

b
µ=

γ µ
 

and 

 ( ) ( )1 1 1T T sh sh shV Vψ = − α β + ν − α β  (21) 

Eq. (20) is simplified to 

 1exp( ) 0r rZ V−α β − ψ =  

where from 

 1 exp( )r rZ V= ψ α β  (22) 

Z can be determined if the values of αi (with i = r, T and sh), β, νsh, b, c and Vi are known. The 
steps for calculating Z can be as follows: 

(1) A value of α'sh is assumed 

(2) 
2

T R T T T sh
T sh

R sh sh sh shi

b V V
c V V

′κ − γ µ α′ ′α = = α =
− γ µ νΣκ

 is calculated 

(3) ψ is calculated with Eq. (21), α'sh and α'T 

(4) 1
1exp( )d r r r r R Tr V bZ

ψ= µ −α β = µ = γ µ ψ  and r d rr Vκ =  are calculated 

(5) ( ) ( ) ( )
2

22 2
1

i
T sh sh r

R T
N V V V

b
Σκ

= = + ν + ψ
γ µ
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(6) 
2 2

sh R T sh sh sh sh
sh

i i

b V V
N

κ −γ µ ν −να = = =
Σκ Σκ

 is calculated and compared to α'sh  

(7) When α'sh ≈ αsh, T
T

V
N

−α =  and 1 r
r

V
N

ψα =  are calculated 

(8) Check of Σαi
2 = 1 

(9) Z is calculated by Eq. (22). 

The value of Z is used below in the calculation of the partial coefficients. 

3.1.4 Partial coefficients 
The design values in Eqs. (14) through (16) can alternatively be expressed with partial coeffi-
cients as 

 exp( )c r
d r r

r r

rr k Vµ= = −
γ γ

 (23) 

 ( ) ( ), , (1 ) (1 )d s R T c sh c s R T T T sh sh shs b c b k V c k V= γ γ ε + ε = γ γ µ + + µ +  (24) 

which in the limit state condition, Eq. (3), give 

 ( )exp( ) (1 ) (1 ) 0r
r r s R T T T sh sh sh

r
k V b k V c k Vµ − − γ γ µ + + µ + ≥

γ
 

With Z = µr/bγRµT, νsh = cµsh/bµT and ψ2 = (1+kTVT)+νsh(1+kshVsh) it can be re-written as 

 
2 2

exp( ) c
s r r r

r

Z Z rk Vγ γ ≤ − =
ψ ψ µ

 (25) 

giving the partial coefficients γrγs. Z is calculated according to Section 3.1.3 and rc/µr is calcu-
lated from Eq. (8) with xi,c/µi = exp(-αiβVi) = exp(-kiVi). ki depends on actual fractile value. 

3.2 Numerical values 

Calculations of partial coefficients for thermal cracking problems of young concrete have been 
performed by varying the variables shown in Table 3 and keeping all others constant. 

νsh are defined by to Eq. (13) and states the ratio between the mean values of the strains of 
shrinkage and of the strains of temperature change. b and c are varied to simulate situations 
when one of the two strain components has smaller or larger influence. Especially in high 
strength concrete the shrinkage is considerable implying larger values of c. Vε is the coefficient 
of variation of the actual concrete (actual ultimate strain εcu). VC is the coefficient of variation of 
the methods used for estimating the risk of thermal cracking. Compare VC with Methods 1 to 3 
in Section 1 where e.g. VC = 0.15 for Method 1, VC = 0.10 for Method 2 and VC = 0.05 for 
Method 3. These values are just an attempt to estimate the accuracy in the methods and should 
not be seen as what is right. The safety index β is varied to coincide with safety classes 1 and 3 
with probabilities of failure of 10-4 and 10-6, see Table 2. 
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Table 3. Variables varied in the determination of partial coefficients for thermal cracking prob-
lems. 

Variable Values 

shν  0.01 c
b

 0.20 c
b

 0.50 c
b

 1.00 c
b

 2.00 c
b

 

b 1/3 1 3   
c 1/3 1 3   
Vε 0.05 0.10 0.15 0.20 0.25 
VC 0.05 0.10 0.15 0.20 0.25 
β 3.72 4.75    

 

The coefficient of variation of the temperature induced strains is given the value VT = 0.08 ac-
cording to [16]. The coefficient of variation of the shrinkage is given the value Vsh = 0.20. This 
value is a bit smaller than what can be determined from [17]. The values of kT and ksh are 1.65 
coinciding with 95 % fractile values of the temperature and shrinkage induced strains, respec-
tively, see Table 4. 

The coefficients of variations of the geometry parameter Va and of the factor transferring 
strength in test specimens and in real structures Vρ are both given the value 0, that is Va = 0 and 
Vρ = 0. The coefficient of variation of the geometry is assumed to be very low since in civil en-
gineering structures, any divergences from the right measures do not affect the risk of thermal 
cracking. For the concrete ultimate strain, kε = 0.13, is chosen assuming a 45% fractile value. 
The high value of the ultimate strain for the concrete is chosen bearing in mind that thermal 
cracking only causes flaws and costs for repair and reduction of the life of the structure but not 
total failure. For the accuracy in design method, C, for the geometry parameter, a, and for the 
factor transferring the ultimate strain in test specimens and in real structures ρ, the coefficient k 
is chosen kC = ka = kρ = 1.65 assuming 5% fractile values, see Table 4. 

Table 4. Constant values for the resistance parameters C, a, ρ and ε and the load parameters T 
and sh used in the determination of the partial coefficients. 

kC Va ka Vρ kρ kε VT kT Vsh ksh 

1.65 0 1.65 0 1.65 0.13 0.08 1.65 0.20 1.65 

 

3.3 Calculation of partial coefficients 

The following presumptions and values are used to illustrate the calculation of partial coeffi-
cients. Let the influence of the imposed volume changes be equal, b = c = 1. The mean value of 
the volume change due to shrinkage is one hundredth of the mean value of the imposed volume 
change due to the temperature change, νsh = 0.01⋅1/1 = 0.01. Further, the variation coefficients 
of the strength of the concrete and the calculation method are assumed to be five percent, Vε = 
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VC = 0.05. The safety index β = 3.72 corresponding to safety class 1 and corresponding to a 
probability of exceeding the limit state condition pf = 10-4. The following values for the resis-
tance parameter, the sensitivity values α and the help values ψ, N and Z are obtained, Table 5 
and Table 6. 

Table 5. Calculated values for the resistance parameter. 

Vr c CC µ c aa µ c ρρ µ c εε µ c rr µ  

0.071 0.921 1.000 1.000 0.994 0.915 

 

Table 6. Calculated sensitivity values α and help-values ψ1, N and Z. 

α'sh αT ψ1 N αϕ αT αr Z 

-0.017 -0.682 1.213 0.117 -0.017 -0.682 0.731 1.470 

 

The partial coefficient for this case is then calculated as, Eq. (25) 

 
2

1.470 0.915 1.174
(1 1.65 0.08) 0.01(1 1.65 0.20)

c
r s

r

Z rγ γ = = =
ψ µ + ⋅ + + ⋅

 (26) 

implying that the resistance parameter must be about 1.174 times larger than the load parameter 
for not exceeding the limit state condition. 

All the partial coefficients calculated with values according to the description and Table 3 above 
are presented in Figure 2 to Figure 6 below. In all the diagrams, the curves from the lowest to 
the upper most represent VC = 0.05, 0.10, 0.15, 0.20 and 0.25, respectively. See [8] for more 
descriptions of the calculations and the results. 

In Figure 2 to Figure 6 it can be seen that with increased safety index β, the partial coefficient 
γrγs increases and is varying over a larger range depending on the values of VC. When the coeffi-
cient b increases also the partial coefficient increases, and when b decreases the partial coeffi-
cient decreases, compare Figure 3 and Figure 4 with Figure 2. For the coefficient c, the opposite 
is valid. When c increases, the partial coefficient decreases and when c decreases, the partial 
coefficient increases, compare Figure 5 and Figure 6 with Figure 2. 
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b) β=4.75, b=1, c=1a) β=3.72, b=1, c=1
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Figure 2. Partial coefficient γrγs for a) β=3.72, b=1 and c=1, b) β=4.75, b=1 and c=1. 

a) β=3.72, b=1/3, c=1 b) β=4.75, b=1/3, c=1
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Figure 3. Partial coefficient γrγs for a) β=3.72, b=1/3 and c=1, b) β=4.75, b=1/3 and c=1. 

a) β=3.72, b=3, c=1 b) β=4.75, b=3, c=1

Vε

γrγs

Vε

γrγs

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.250.05 0.10 0.15 0.200.00

VC=0.05 VC=0.10 VC=0.15 VC=0.20 VC=0.25

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.250.05 0.10 0.15 0.200.00

VC=0.05 VC=0.10 VC=0.15 VC=0.20 VC=0.25

 
Figure 4. Partial coefficient γrγs for a) β=3.72, b=3 and c=1, b) β=4.75, b=3 and c=1. 

a) β=3.72, b=1, c=1/3 b) β=4.75, b=1, c=1/3
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Figure 5. Partial coefficient γrγs for a) β=3.72, b=1 and c=1/3, b) β=4.75, b=1 and c=1/3. 
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a) β=3.72, b=1, c=3 b) β=4.75, b=1, c=3
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Figure 6. Partial coefficient γrγs for a) β=3.72, b=1 and c=3, b) β=4.75, b=1 and c=3. 

4 RESULTS 

4.1 Final values of partial coefficients 

Final values of the partial coefficient γrγs are determined from the previous calculations with b = 
c = 1, β = 3.72 (probability of failure, pf = 10-4) and with coefficients of variation, VC = 0.05 and 
Vε = 0.05, 0.10 and 0.15. The values are chosen to coincide with the first row in Table 1. That is, 
for Method 3 (the column of complete material data) the models of analysis (computer software) 
are very well documented and tried and should give results not varying much from reality. 
Therefore, the coefficient of variation for the method of calculation is chosen to be small, VC = 
0.05. For Method 2, (columns for material data given in [1]) lots of calculations and judgements 
are behind, [2], implying good accuracy of the analyses, again VC = 0.05. The differences in 
accuracy of material data are taken into account by varying the coefficient of variation of the 
material Vε as stated, Vε = 0.05, 0.10 and 0.15. Again, kT = ksh = 1.65 for 95 % fractile values. 
Further, as an extension of the final determination of the partial coefficients, 55 % fractile values 
are assumed for the temperature and the shrinkage induced strains to coincide with the assumed 
fractile value of the ultimate strain (45 % fractile), see Section 3.2. For environmental class A2 
and Vε = 0.05, 0.10 and 0.15, the partial coefficient γrγs is taken as the values of the lowest curve 
in Figure 2a) presented in Table 7. 

Table 7. Partial coefficient γrγs from calculation with the probabilistic method for environmental 
class A2 and Vε = 0.05, 0.10 and 0.15. 

  Complete  Material data given in the code 
Environm. 

class 
kT, ksh material data 

Vε=0.05 
360≤C≤430kg/m3

Vε=0.10 
430≤C≤460kg/m3

Vε=0.15 

0.13 (55% fractile) 1.36 1.52 1.75 A2 
1.65 (95% fractile) 1.15 1.29 1.48 
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4.2 Effects of exceeding the limit state condition 

The calculation of partial coefficients above is chosen to be valid for environmental class A2. 
The effects of exceeding the limit state condition (cracking) in a structural member are smaller 
in environmental class A2 than in classes A3 and A4. Therefor an extra partial coefficient γn is 
introduced. The values of the extra partial coefficient γn are chosen as the mean ratio between 
the values in the rows in Table 1, see Table 8. 

Table 8. Partial coefficient γn depending on environmental classes. 

 Environmental class 
 A2 A3 A4 

γn 1.00 1.07 1.14 

 

Final values of the partial coefficient γrγs are obtained from Table 7 with partial coefficient γn in 
Table 8, see Table 9. 

Table 9. Final values of partial coefficient γrγs as determined by probabilistic method. 

Environm.   Complete  Material data given in the code 
class kT, ksh material data 360≤C≤430kg/m3 430≤C≤460kg/m3

0.13 (55% fractile) 1.15 1.29 1.48 
A2 1.65 (95% fractile) 1.36 1.52 1.75 

0.13 (55% fractile) 1.23 1.38 1.58 A3 
1.65 (95% fractile) 1.45 1.62 1.87 

0.13 (55% fractile) 1.32 1.48 1.70 A4 1.65 (95% fractile) 1.56 1.74 2.00 

 

A comparison with the values that is stated in [1] and the values of the partial coefficients ob-
tained by the probabilistic method are depicted in Figure 7. As can be seen, the values for kT = 
ksh = 1.65 (95 % fractile values) are somewhat higher than the values given in [1]. The values 
show good agreement even though the uncertainties in the chosen values of the variables used in 
the probabilistic method and that the partial coefficients stated in [1] only are based on experi-
ences. For kT = ksh = 0.13 (55 % fractile values), the partial coefficients are much higher than the 
values in [1]. The reason for this is that with only 55 % fractile values of the temperature and the 
shrinkage induced strains, the risk of exceeding these values is increased. This implies an in-
creased risk of exceeding the limit state condition, whereupon higher partial coefficients are 
needed. 
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Figure 7. Comparison between partial coefficients stated in [1] and partial coefficients obtained 
by the probabilistic method. 

5 DISCUSSION 

It is possible to calculate partial coefficients for thermal cracking problems of young concrete. 
The values presented above coincide well with the crack safety values stated in the Swedish 
building code for bridges, [1]. However, the calculated values of the partial coefficient are based 
on many assumptions and simplifications and they shall not be seen as what is absolutely true 
right, further judgements are always necessary. 

The used coefficients of variation of the thermal changes and of the shrinkage need further in-
vestigation. The values are roughly taken from [16] and are only assumed values that have not 
been well verified. 

The crack safety values in [1] are all based on experience, so also these values are a bit vague. 
The calculated partial coefficients presented here can be seen as an attempt to verify the values 
in [1]. However, all estimations of the risks of thermal cracking of young concrete have to be 
based on more judgements and analyses of the problems as a whole rather than on the crack 
safety values given in [1]. 

The differences in the partial coefficient between the environmental classes need further investi-
gations. The values that are stated in [1] are only based on logical arguments by the persons who 
have written the code, meaning that higher environmental class needs higher partial coefficients. 
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