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1. INTRODUCTION 

Composite beams demonstrate many features which make a probabi­

listic approach very desirable, e.g. a considerable variation with­

in such material properties as strength and modulus of elasticity. 

Moreover, a strong correlatipn between stiffness and strength 

properties can exist. The effect on the failure risk of this cor­

relation is of great interest. 

In this paper the beam-action is treated for the special case of 

a rigid joint behaviour. The mechanical properties for this case 

are described (section 2). Simplified design methods presented by 

Cornell/2/ and Hasofer-Lind /9/ are used for the statistical analy­

sis. These methods are briefly described (section 3). The described 

failure modes are treated from a statistical point of view with 

special regard to correlation between influential parameters 

(section 4). The difference in calculated formal failure risks 

for the different statistical methods used is demonstrated (sec­

tion 4). In some special cases, we consider the complete beam 

structure when all the failure modes may occur (section 5). 
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2. MECHANICAL PROPERTIES 

The overall view of the studied composite beam is to be seen in 

figure 2.1. 
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Fig 2.1 Overall view of composite beam 

Wooden beams Ware thus connected to a reinforced concrete slab 

C. The regidity of the joint can be very stiff for instance by 

gluing or it can be flexible as for instance when the parts are 

joined by nailed steelplates. 

In the following, we only treat the case with a rigid joint be­

haviour. We thus assume that there is no bond-slip between the 

different parts and failure of the joint is assumed to take place 

when the shear stress in the joint reaches the ultimate value fj. 

Bending failure can occur in a number of modes of which two are 

considered here, namely: 

a) Primary brittle failure in the wood-beam, 

b) Yielding of the reinforcement and secondary failure of the 

wood-beam. 

The mechanical failure criteria of the bending modes are first 
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derived. For the analysis it is convenient to use the statical 

model according to figure 2.2. 
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f'ig 2. 2 Statical model for the composite beam-action 

The load-effect expressed as a bending moment Mis thus giving 

rise to a bending moment M in the wooden beam and a couple N•r 
w 

where the compressive force N is resisted by the wooden beam and 

the tensile force N is resisted by the reinforcement of the con­

crete slab. The bending moment capacity of the concrete slab is 

neglected because of cracking. Already in the service limit state 

some cracking has occurred and the cracks propagate more or less 

through the whole depth of the slab. We have gained some experience 

from experimental tests /8/ which justify the assumptions made. 

According to the assumptions made above the geometrical compati­

bility of the joint can be formulated as 

( 2 • 1 ) 

where 

= strain in reinforcement 

= strain in wooden beam 

(transformed to the level of the steel reinforcement) 

The material strains can be expressed as 

(2. 2) 

where 

N 
Es= EA 

s s 

= 
(M-N•r) •r 

E •J w w 

N - --
E A w w 

E, E are 
s w 

the modulus of elasticity of steel and wood, 

respectively. 

respectively, 

A , 
s 

and 

are the areas of steel and wood, 

is the moment of inertia of the 
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wooden beam. From (2.1) and (2.2) we get 

( 2. 3) N = M 
r' 

where 

( 2. 4) 

For a primary brittle failure in the wooden beam, the safety 

margin can be written as 

( 2. 5) z ~ f - (J w w 

where f is 
w 

the bending strength of 

caused by the load on the beam. The 

in the following way: 

the wood and o is the stress 
w 

safety margin is here defined 

Z < 0 

Z > 0 

corresponds to failure, 

corresponds to the safe domain. 

With 
M N M - N • r N 

w + max max + max 
ow = = w A w A w w w w 

the equation ( 2. 5) can be written as 

( 2. 6) 1 z = - {f • 
WW W 

w 
WW + Nmax ( r - A: ) - M } 

In (2.6) Ww is the symbol of the bending resistance of the wooden 

beam. With N according to (2.3) the safety margin Z can be 
max 

written in the following way 

( 2. 7) z = 
r'-r + W /A w w 

r'W w 
{f 

w 

r'W 
w 

r'-r + W /A w w 
- M } • 

For a primary yield of the reinforcement with a yield strength of 

f, the force N amounts to 
s 

( 2. 8) N = f 
s 

A 
s 

independent of the joint behaviour in the rest of the beam 

provided the joint capacity is large enough. In this case, the 

safety margin can easily be derived to be 

( 2. 9) z = _1_ 
WW 

M } • 
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In order to compare different failure-modes it is more convenient 

to rewrite the expressions of the safety margins on a level cor­

responding to the beam load action q. Instead of eq. ( 2. 7) and 

eq. (2.9) we thus get 

(2.10) z = 

and 

(2.11) z = 

respectively. 

Sf 
w 

r' • W 
w 

r'-r + W /A w w 

Sf A s s 
L2 

- q 

When analysing eq. (2.10) in a probabilistic manner it is inter­

esting to study the effect of a strong correlation between E and 
w 

f which is very often the case for real conditions. It is also w 
possible that some correlation exists between Ew and q because of 

the fact that a stiffer beam will give a higher response for 

dynamic loads. When analysing eq. (2.11) it is from a theoretical 

point of view interesting to study correlation between the 

strength-values f and f . For most practical cases it is, how-
w s 

ever, to be expected that this correlation is nearly non-existent. 

Joint failure will occur at the support for the treated loading 

case presented in fig. 2.1. The maximum support reaction R amounts 

to 

R=SI!:'.= f.• b • r' 
2 J 

corresponding to a safety margin 

2f. • b • r' 
(2.12) z = - q 

L 

When analysing eq. (2.12) it is interesting to study the correla­

tion between f. and f which can be very strong. In this case we 
J w 

thus have a correlation between the different failure-modes 

according to ( 2. 1 0) , ( 2. 11) , and ( 2. 1 2) • 
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3. RELIABILITY INDICES 

We will analyse the three described failure modes, whose safety 

margins are given by formulas (2.10), (2.11), and (2.12), using 

reliability indices according to both Hasofer-Lind /9/ and 

Cornell /2/. For a detailed description of these two methods see 

either /2/ and /9/ or a modern textbook, e.g. /7/. A descrip­

tion adjusted to suit the failure modes considered in this paper 

is found in /1/. 

Consider the safety margin Z as a general function of n random 

variables z
1

, z
2

, •.. , zn' not necessarily independent, whose 

expectations, variances and covariances are known. Letµ. denote 
l 

the expectation of z., i = 1, 2, ... , n, and cr .. the covariance 
l lJ 

between Z. and Z., 
l J 

i, j = 1, 2, •.. , n. Furthermore, let the 

safety margin be 

( 3 • 1 ) Z = g(Z
1

, z
2

, ••. , z ) . 
n 

Then the corresponding limit state surface is given by 

g(2
1

, 2
2

, ••• , 2n) = 0 in the (2
1

, 2
2

, •.• , 2n)-space on which 

the distribution of the random variable (Z 1 , z 2 , ••• , Zn) is 

defined. This limit state surface divides the 2-space into a 

failure region {z:g(2
1

, 2
2

, •.• , 2n) ~ O} and a safe region 

{z:g(2
1

, 2
2

, ••• , 2n) > O}. 

Cornell [2] introduced a reliability 'index B defined as 

µz 
B = 

cr z 
( 3. 2) 

where µz denotes the expectation and crz the standard deviation of 

z. Geometrically, B can be described as the distance between µz 

and O measured in units of crz (see figure 3.1). 

Fig 3. 1 
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When g is a non-linear function of z 1 , z 2 , ... , zn we cannot ex­

press Yz and oz exactly inµ. and o ... The most straight-forward 
l lJ 

idea is then to approximate Yz and oz using a first order Taylor 

expansion of g aroundµ., i = 1, 2, ... , n (see e.g. /5/, /7/). 
l 

Then we get the following approximation, usually called Cornell's 

index, 

( 3 . 3) 

To get Hasofer-Lind's index we first transform the variables z 1 , 

z 2 , ... , zn into n uncorrelated and normalized variables x
1

, x2 , 

... , X .(For details see e.g. /1/ or /7/.) Then the limit state 
n 

surface g(z 1 , z 2 , ... , Zn) = 0 in the i-space corresponds to a 

limit state surface h(x 1 , x 2 , ... , xn) = 0 in the x-space. The 

reliability index, SH-L' according to Hasofer and Lind /9/, is 

now defined as the shortest distance, in the x-space, between the 

origin and the limit state surface h(x 1 , x 2 , ... , xn) = 0. Hasofer­

Lind's index can also be obta_,ined from formula (3.2) if Yz and Clz 

are approximated by using a first order Taylor expansion of g 

around the point on the limit state surface which is closest to 

the origin in the x-space. When the limit state surface is a 

hyperplane Hasofer-Lind's reliability index SH-L coincides with 

Cornell's index S in eg. (3.3). 
C 

As was first pointed out by Ditlevsen /4/, Cornell's index has a 

severe disadvantage. It is namely dependent on how the safety 

margin is defined. Hasofer-Lind's index does not have this problem 

of invariance of safety margins as was shown by Ditlevsen /4/. 
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4. RESULTS 

We first calculate Hasofer-Lind's index for the failure mode whose 

safety margin is defined in (2.10), i.e. for a primary brittle 

failure in the wooden beam. We consider the bending strength of 

the wood, f, the beam load action, q, and the modulus w 
ticity of wood, E , as random variables. All the other w 
are assumed to be constant. Furthermore, we 

be positively correlated, while fw and q as 

assumed to be uncorrelated. Set 

( 4 • 1 ) 

assume f 
w 

well as q 

of elas-

parameters 

and E to 
w 

and E are 
w 

The limit state surface corresponding to the safety margin in 

(2.10) may now be written as 

( 4. 2) 

where 

( 4. 3) 

{ 

c = 8 W /L
2 

c
3

1 

= I / ~E A ) w s s 

Let the expectation and variance of Z. beµ. and cr 2 , respectively, 
l l l 

i = 1, 2, 3. Furthermore, let p 13 denote the correlation coef-

ficient between z1 and z3 . Using the covariance matrix (crij) = 

= (p .. cr.cr.) of (z
1

, z2 , z3 )' we can express the transformation 
lJ l J 

leading to the uncorrelated and normalized random variables x 1 , 

x2 , x3 explicitly. Hence the limit state surface in the x-space 

( 4. 4) 

can be expressed explicitly. It can be shown that h can be written 

in the following form: 

( 4. 5) 

where the coefficients aij' bi, i, j = 1, 2, 3 and c 0 are func­

tions of µ., cr., i = 1, 2, 3, p1 3 , c., i = 1, 2, 3, 4. Their ex-
1 l l 

pressions require a considerable amount of space and are there-
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fore left out. For details the reader is referred to /1/. To find 

Hasofer-Lind's index is now equivalent to finding the minimum dis­

tance between the origin and the surface h(x
1

, x
2

, x
3

) = 0, the 

minimum distance being attained at the point P, say. Let 

(a 1 , a 2 , a 3 )' denote the unit vector from the origin towards P, 

see figure 4.1. Since, in our case, his differentiable the 

Hasofer-Lind's index is the smallest B found by solving the 

system of non-linear equations 

( 4. 6) ~11£ (~)2 ax. 
1 

ax. 
l J 

i=1,2,3, 

where the partial derivatives in (4.6) are evaluated at the point 

(Sa 1 , Sa 2 , Sa 3 ). This method of solution is described e.g. in /7/. 

X1 

Fig 4.1 

We have solved the system of equations in (4.5)-(4.6) using a 

standard routine from the NAG library called NAG C05NAF, see /10/. 

The following realistic parameter values have been used: 

b 

A 
s 

;:: 0.05 m, 

= 2.0-10- 4 2 m , 

h 

E 
s 

:::Q.15m, 

= 2. 1 • 10 5 MPa, 

r = 0.1 m, 

L = 4 m. 

For the random variables the following expectations and standard 

deviations have been chosen (c.f. /8/). The material parameters 

µ 1 , 0
1

, µ 3 , 0 3 are a realistic choice considering a structural 

wood. The parameters µ
2 

and 0 2 for the load effect have been 

chosen to give reliability indices between 1.5 and 4.5. 
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Bandom_variable Expectation Standard deviatio. -----------------· 
z1 = f w µ 1 = 40 MPa 01 = µ 1 / 5 

z2 = q µ2 = 1•10-3 (10-3)4•10-3 MN/rn 02 = µ2/3 

z3 = E 
w 1l3 = 1 • 1 0 4 MPa 03 = µ3/5 

Hasofer-Lind's index has then been calculated according to the 

described method for p 13 = 0.00 (0.05) 1.00. In table 4.1 the 

results for P13 = 0.00 (0.10) 1.00 are stated. For more details 

see /1/.In table 4.1 we can see that the correlation between f 
w 

and Ew does not change the reliability index SH-L too much. But 

the index increases with p 13 . According to /3/ a realistic value 

of p 13 would be 0.6 _'S p
13 

~ 0.8. 

As a comparison to Hasofer-Lind's index we have also calculated 

Cornell's index, SC' according to eq. (3.3) with the limit state 

surface defined by (4.2). (For details see /1/.) The result is 

given in table 4.1 for the same parameter values as above. 

Comparing Cornell's index Sc and Hasofer-Lind's index SH-L in 

table 4.1, we find that they are almost the same when p
13 

=.O but 

TABLE 4. 1 Cornell's index, Sc' and Hasofer-Lind's index, SH-L' 

for the limit state surface in eq. (4.2), correspond­

ing to brittle bending failure, when the expected 

beam load, µ 2 , is varied 

3 1 2 3 4 1 2 3 4 µ · 1 0 2 

P13 Sc SH-L 

0.00 4. 1 7 3. 31 2.46 1. 70 4.21 3.32 2.45 1 . 6 9 
0. 1 0 4. 11 3.28 2.45 1. 70 4.23 3.34 2.47 1. 71 
0.20 4.05 3.26 2.44 1. 71 4.25 3.36 2.49 1 . 7 2 
0. 30 3.99 3.23 2.44 1. 71 4.26 3.39 2.51 1 . 7 4 
0. 40 3. 94 3.20 2.43 1. 71 4.28 3.42 2.54 1. 75 
0.50 3.89 3. 18 2.42 1 . 71 4.30 3.44 2.56 1 . 7 7 
0.60 3.84 3. 1 5 2.42 1. 71 4.32 3.48 2.59 1 . 79 
0.70 3.79 3. 1 3 2.41 1 . 71 4.34 3. 51 2.62 1 . 81 
0.80 3.74 3. 11 2.40 1 . 71 4. 36 3.55 2.66 1 . 83 
0.90 3.70 3.08 2. 39 1.72 4.39 3.59 2.69 1 . 8 6 
1. 00 3.65 3.06 2.39 1. 72 4.41 3.63 2.73 1 . 88 
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-3 . differ when p 13 is larger. Furthermore, for µ
2 

~ 3•10 Cornell's 

index decreases with p13 , while Hasofer-Lind's index increases. It 

is easily shown (see /1/) that Cornell's index will decrease with 

P13 for µ 2 < µ 1c 1 , which is 3.75•10- 3 in our case, and increase 

otherwise. The different behaviour in p
13 

depends on the fact that 

Cornell's index does not take account of the coefficients a .. of 
lJ 

the second-degree terms in the limit state surface in eq. (4.4)-

-(4.5), all of which depend on p 13 . Hence, Cornell's index will 

give a misleading description of how the reliability depends on 

the correlation between fw and Ew. 

Since Cornell's index is not invariant we do not necessarily get 

the same behaviour of that index if we rewrite the limit state sur­

face in (4.2). In /1/ Cornell's index has been calculated using 

another form of the limit state surface than the one in (4.2). The 

conclusions were the same as above, i.e. Cornell's index ought to 

be avoided when there are correlations present. 

To visualize the situation described here 

of the limit state surface in (4.4)-(4.5) 

we have made a picture 
-3 for µ2 = 2•10 and 

P13 = 1. When P13 = 1 we have two random variables only, and hence 
·, 

we can draw the limit state surface in the (x
1

, x
2
}-plane as a 

second degree curve (see figure 4.2). 

In figure 4.2 the straight lines we get when approximating the 

limit state curve in accordance with Cornell's index and Hasofer­

Lind's index, respectively, are also drawn. The two points denoted 

in figure 4.2 are those on the two lines closest to the origin. 

The minimum distances between the origin and each of the lines are 

Sc= 3.06 and SH-L = 3.63, respectively. 

Corresponding pictures when p13 = 0 and 0.75, respectively, are 

given in /1/. We may conclude that when p 13 = 0 the two indices 

are almost the same, Sc= 3.31 and SH-L = 3.32, but the two ap­

proximating planes differ in orientation. When p 13 = 0.75, which 

is a realistic value, the two planes are more alike in orientation 

but differ more in minimum distance, Sc= 3.12 and SH-L = 3.53. 

When p 13 = 1 the two lines are almost parallel but differ in 

minimum distance. 
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~ 
Limit sta.te 

curve 

Corne\ \'.s 
Qpprox 

The limit state curve in (4.4)-(4.5), when p13 = 1, to­

gether with Cornell's and Hasofer-Lind's approximating 

lines 

We will now study the failure mode whose safety margin is defined 

in (2.11), i.e. for a primary yield in the reinforcement and a 

secondary brittle failure in the wood. Here we consider the bend­

ing strength of the wood, fw, the beam load action, q, and the 

yield strength of the reinforcement, f , as random variables, 
s 

while all the other parameters are held constant. Furthermore, we 

assume f and f to be positively correlated, while fw and q as 
w s 

well as q and f are assumed to be uncorrelated. Let, as before, 
s 

z1 = f w' z2 = q and furthermore set 

( 4. 7) 

The limit state surface corresponding to the safety margin in 

(2.11) may now be written as 

( 4. 8) 

where 



( 4. 9) 
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c = 8A (r - W /A )/L
2 

5 s w w 

and c
1 

is defined in (4.3). Since the limit state surface (4.8) is 

a hyperplane Hasofer-Lind's index and Cornell's index coincide and 

may be written as 

(4.10) 
1

~ 2 a 2 + a 2 + c 2 a 2 + 2c c p a a V 1 1 2 5 4 1 5 14 1 4 

Here µ
4 

and a
4

2 are the expectation and the variance, respectively, 

of z
4

, and p
14 

is the correlation coefficient between z1 and z4 . 

The index defined by eq. (4.10) has been calculated for the same 

parameter values as before with the addition of 

µ
4 

= 500 MPa and 

The result is given in table 4.2 for P14 = 0.00 ( 0. 1 0) 1. 0 0. We 

see that the index decreases with increasing correlation coef­

ficient between fw and fs. Furthermore, the effect of the correla­

tion coefficient on the index is worthwhile to observe for µ 2 = 
-3 -3 = 2•10 and especially for µ 2 = 1•10 . 

Eventually, we will calculate indices for the failure mode whose 

safety margin is defined in eq. (2.12), i.e. for a joint failure. 

TABLE 4.2 

3 µ • 1 0 
2 

P14 SH-L 

0.00 
0. 1 0 
0.20 
0.30 
0.40 
0.50 
0.60 
0. 70 
0.80 
0.90 
1. 00 

Hasofer-Lind's index for the limit state surface in 

eq. (4.8), corresponding to plastic bending failure, 

when the expected beam load, µ 2 , is varied 

1 2 3 4 

7.20 5. 1 3 3.45 2.22 
6. 97 5. 01 3.39 2.20 
6.75 4.90 3.34 2. 1 7 
6.56 4.79 3.29 2. 15 
6.38 4.69 3.24 2. 1 3 
6. 21 4.60 3. 1 9 2. 11 
6.06 4.51 3. 15 2.08 
5. 91 4.43 3. 11 2.06 
5.78 4.35 3.07 2.04 
5.66 4.28 3. 03 2.03 
5.54 4. 21 2.99 2.01 
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The beam-load action, q, the modulus of elasticity of wood, E, 
w 

and the strength of the joint, f., are considered as random 
J 

variables. All the other parameters are assumed to be fixed. Here 

we assume E and f. to be positively correlated, while all other 
w J 

pairs of random variables are uncorrelated. As before we let z
2 

= 

(4.11) 

= E and furthermore set 
w 

Let the expectation and variance of z 5 be denoted 

respectively, and let the correlation coefficient 

z
5 

be denoted by p
35

. 

2 by µ 5 and o5 , 

between z
3 

and 

The safety margin in (2.12) gives raise to the same type of limit 

state surface as in eq. (4.2), but is less complicated, viz. 

(4.12) 

where 

(4.13) c
6 

= 2b/(Lr) 

and c
2 

and c
3 

are defined in (4.3). Hence we can utilize the cal­

culations done earlier when determining the indices for eq. (4.12). 

In the transformed x-space the limit state surface can be written 

in the same form as in (4.5). Then using the same method as 

earlier, we calculate Hasofer-Lind's index. The result, together 

with Cornell's index, is given in table 4.3 for p 35 = 0.00 (0.10) 

1 . 0 0. The parameter values used are the same as earlier with the 

addition of 

µ = 1 • 4 MPa 
5 

and a = 
5 

Here 

when 

the value of 
-3 

µ2 = 2•10 . 

µ
5 

has been chosen to give an index around 3.5 

In table 4.3 we see that both Cornell's index and Hasofer-Lind's 

index are decreasing 

Hasofer-Lind's index 
-3 3·10 . But when µ 2 

with p 35 . Furthermore, Cornell's i~~ex and 

are almost the same when µ 2 = 4•10 and 

= 2•10- 3 and 1·10-3 they differ more. The 

correlation p
35 

between E and f. does not change the 
-3 ~3 J 

index much 

the correla-when µ
2 

= 4•10 and 3•10 . For smaller values of µ 2 
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tion has a greater effect on the indices, however. It is here of 

great interest to observe that by changing the value of A from 
s 

2·10-
4 

to 1•10-
4 

the effect of the correlation on the indices be-
-3 -3 comes greater, especially for µ

2 
= 1·10 and 2•10 . The results 

in this case, i.e. when A = 1•10-4 , µ = 1•10-3 andµ = 2·10- 3 
s 2 2 

and all the other parameter values are as before, are stated in 

table 4.4. 

TABLE 4.3 Cornell's index, SC, and Hasofer-Lind's index, SH-L' 

for the limit state surface in-eq. (4.12), corresponding to 

brittle joint failure, when the expected beam load, µ
2

, is varied 

3 1 11 • 1 0 2 

P35 Sc 

0.00 6. 45 
Q. 1 0 6.28 
0:20 6. 1 2 
0.30 5.97 
0.40 5.84 
0.50 5. 71 
0.60 5.59 
0.70 5.48 
0.80 5.37 
0.90 5.27 
1.00 5. 1 7 

TABLE 4. 4 

112 = 10 3 

P35 Sc 

0.00 
0. 1 0 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

2 3 4 1 2 3 4 

SH-L 

3.76 2.01 0. 91 6.80 3.82 2.02 0.91 
3.70 1. 99 0.91 6.70 3.77 2.00 0. 91 
3.65 1 . 9 8 0.90 6.61 3.72 1. 99 0.90 
3.59 1. 96 0.90 6.52 3.68 1. 97 0.90 
3.54 1. 94 0.89 6.43 3.64 1. 95 0. 8 9 
3.49 1.92 0.89 6.35 3.60 1. 94 0.89 
3.45 1 . 91 0.88 6.26 3.56 1. 93 0.88 
3.40 1.89 0.88 6. 18 3.52 1. 91 0.88 
3; 36 1. 88 0'. 87 6. 1 0 3.49 1. 90 0.88 
3. 31 1. 86 0.87 6.03 3.45 1. 88 0.87 
3.27 1.85 0.86 5.95 3.42 1. 87 0.87 

Cornell's index, SC, and Hasofer-Lind's index SH-L' 

for the limit state surface in eq. (4.12), correspond-

ing to brittle joint failure, 
-4 is changed to A = 1•10 

" 
1 2 

SH-L 

6. 34 4.32 
6. 1 0 4.20 
5.88 4.09 
5. 68 3.99 
5. 51 3.90 
5.35 3. 81 
5.20 3.73 
5. 06 3.66 
4.94 " 3.59 
4.82 3.52 
4. 71 3.46 

when the parameter A 
s 

1 2 

7. 31 4.55 
7. 1 5 4.45 
6.99 4.36 
6.83 4.28 
6.68 4.20 
6.54 4. 1 3 
6.40 4.06 
6.27 3.99 
6. 1 5 3.93 
6.04 3.87 
5.93 3.81 
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We also see that Cornell's index and Hasofer-Lind's index in 

table 4.4 differ a lot for large values of the correlation coef­

ficient. Hence, with correlation present Cornell's index is un­

reliable even for such an uncomplicated limit state surface as 

the one given by eq. (4.12). 

Some overall-results of the analysis in this section are presented 

in figure 4.3, where the reliability indices, i3H-L' according to 

Hasofer-Lind are given for the different failure modes when the 

expected beam-load, µ 2 , is varied. 

The plastic bending failure mode, when p 14 = 0, will give the 

largest reliability index for the whole load domain. The brittle 

bending failure mode is relevant when the steel-yield strength is 

high and a complete detoriation of the wood takes place before 

the steel yields. In this latter case it is interesting to note 

that the failure mode depends upon the load domain. For µ 2 less 

~H-L 

1 ---·--- . ·------ ----·-.. -----+- -------+--

JS, 
+------+------+------"!----=. 

Fig 4.3 Hasofer-Lind's reliability index for different failure 

modes, when the expected beam load, µ 2 , is varied 

BB = Brittle bending mode (see table ).1) 
PB= Plastic bending mode (see table 4.2) 
JS= Joint shear mode (see table 4.3) 
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than approximately 2·10~ 3 

smallest index and for µ 2 

a brittle bending mode'will give the 
-3 greater than 2·10 a joint-shear mode 

corresponds to the smallest index. Different correlations between 

strength and stiffness parameters may imply small changes in the 

boundaries of these different regions (see figure 4.3). 

The overlapping effects of the different failure modes on the 

total risk of failure are commented upon in the next section. 

5. FAILURE RISK FOR THE STRUCTURE 

We will now, in some special cases, consider all the three failure 

modes described by eqs. ( 2. 10) , ( 2. 11) , and ( 2. 12) together and 

take into account that the beam may fail in any one of the three 

modes. Hence the system will fail if at least one of the three 

safety margins in (2.10), (2.11), and (2.12) is negative. 

Using the same notations as before, we have five random variables 

( 5. 1 ) z3 = Ew, and 

with the correlation coefficients p 13 , p 14 , and p 35 describing 

correlation between z1 and z3', z1 and z4 , and z3 and z5 , respect­

ively. All the other pairwise correlations are assumed to be zero. 

To visualize the situation, we will first consider the case when 

( 5. 2) 

Then we may express the three mentioned safety margins in only 

two uncorrelated random variables, e.g. z1 and z2 . The three limit 

state curves in the x-space hi(x 1 , x 2 ) = 0, i = 1, 2, 3, corre­

sponding to the safety margins in (2.10), (2.11), and (2.12), re­

spectively, are second or first degree polynomials whose coef-

ficients are easily expressed inµ,, 
J. 

constants c., i = 1, 2, ... , 6. (For 
J. -3 

trate these curves with µ 2 = 2•10 , As 

cri, i = 1, 2, 3, and the 

details see /1/.) We illus­

= 2•10- 4 and the values 

of the remaining parameters as before. See figure 5.1. 

The corresponding reliability indices according to Hasofer-Lind's 

index are in this case 3.63 for h
1

, 4.21 for h 2 , and 3.42 for h 3 
(see table 4.1, table 4.2, and table 4.3). To get the probability 
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of failure for the system we now have to integrate the probability 

density of (X 1 , x 2 ) over the region where at least one failure 

will occur. Since we do not know enough of the behaviour of 

q, we assume, as a first approximation, that (X
1

, x
2

) has a 

f and 
w 

stan-

dardized bivariate normal distribution. Instead of using a nu­

merical integration method we may approximate the limit state 

curves by straight lines, since they are sufficiently flat in this 

case. We will approximate the limit state curves in accordance 

with Hasofer-Lind's index, i.e. with the tangent to the curve at 

the point closest to the origin, since then the probability for 

failure is approximately ~(-SH-L) for each failure mode. Using the 

mentioned approximation we get the approximating limit state lines 

as illustrated in figure 5.2. From figure 5.2 we see that the 

probability of failure for the system, P(F), is 

( 5. 3) 

Using Hasofer-Lind's indices and bounds given by Ditlevsen in 

/6/ to estimate P(F
1

nF
3

) we find (for details see /1/) 

( 5. 4) 

Fig 5. 1 

0.000361 < P(F) < 0.000395 . 

-1 x, 
-1 

The limit state curves Fig 5.2 
when p13 = P14 = P35 = 
= 1 • 

x, 

The approximate limit 
state curves when P13 = 

= P14 = P35 = 1 · 

x, 
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But here we must bear in mind that the limit state curves have 

been approximated by straight lines and we have assumed normal­

ity. The assumption of normality may be done formally, however, 

if we use Ditlevsen's generalized second moment reliability index, 

see /5/ or /7/. In that case we can define a generalized second 

moment reliability index for the system as 

( 5. 5) BG = 1>- 1 
(P (F)) 

According to (5.4) we can then give bounds for the index and get 

( 5. 6) 3.35 <SGS 3.39 . 

This generalized second moment index may be compared to the 

three mode reliability indices S1 = 3.63, S2 = 4.21, and S3 = 

= 3.42 according to Hasofer-Lind. 

Still another special case, that is simple to visualize, is when 

( 5. 7) P13 = 1 , = 1 . 

The three limit state surfaces in this case are illustrated in 

figure 5.3. The corresponding, reliability indices according to 

Hasofer-Lind are in this case s1 = 3.63, B2 = 5.13, and B3 = 

= 3.42. This case is more realistic than the first case considered, 

since p 14 in practice will be very close to 0. We will use the 

same idea as above and approximate the surfaces with hyperplanes 

according to Hasofer-Lind's index and assume that (X 1 , x2 , x4 ) 

has a standardized trivariate normal distribution. With F 1 , F 2 , 

and F 3 denoting the failure sets after approximation (see figure 

5.4), we have the probability of failure, P(F), given by 

( 5. 8) 

To calculate P(F) we use bounds derived by Ditlevsen /6/. After 

tedious calculations we get 

0.00035 S P(F) S 0.00039 , 

corresponding to the generalized index 

3.35 <SGS 3.39 . 

Hence the reliability index for the system is about the same as 
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when p 14 = 1. Using the method described it is possible to con­

sider how the different failure modes influence the reliability 

for the system for other parameter values than the special ones 

studied here. It is also possible to use other approximation 

methods than the one described here. It is the intention of the 

authors to treat this subject more in detail in a future paper. 

'. 

l I 
'· 

J 

. . . , 
l 

Fig 5.3 The limit state 

surfaces when p 13 = 
= p = 1 p = 0. 35 ' 14 

x,. 

., 
I 

' } 
" . ' 

' ' ' ' 

/ 

! \, 
' ;:;~. ·~. 

, .......__ 
x, 

Fig 5.4 The approximate limit 

state surfaces when P13 = 

=. P35 = 1 ' P14 = O • 
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