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A method for nonlinear structural analysis 
of reinforced concrete beam grids is pre­
sented in this paper. First, the factors, 
such as o-E curves, cracking of concrete 
and yielding of reinforcement causing the 
nonlinear behaviour of that kind of 
structures are examined. Flexural and 
torsional stiffnesses are defined as a 
secant stiffness from tri-segmentally 
approximated moment-curvature and torque­
twist curves, respectively. The method 
itself is based on the finite beam element 
method and load increment technique with 
iteration. Calculational results are 
compared with some test results. Observa­
tions and suggestions on the basis of the 
comparison are reported. 

INTRODUCTION 

Keywords: cracking, flexural stiffness, 
torsional stiffness, element method 

For the nonlinear analysis of reinforced concrete structures, 
many different procedures have been developed. Most of them are 
based on the finite element method and load increment technique. 
The nonlinear analysis of various structures, however, has many 
various problems. Therefore, different methods and computer 
programs are required for the solution of nonlinear problems of 
dif=erent structures, such as beams, plates, frames, shells etc. 
Although beam grids are broadly composed of a slab and beams, 
the methods for the analysis of plate and beam structures cannot 
be used directly in the analysis of beam grids. Since methods 
specifically intended for the nonlinear analysis of reinforced 
concrete beam grids was non-existent, an investigation was 
regarded as requisite to filling this gap. It was performed 
at the University of Oulu /1/ and its purpose was to develop a 
met~od applicable to the nonlinear structur~l analysis of rein­
forced concrete beam grids. This paper is based on the results 
of that investigation. Its purpose is to describe the method of 
analysis and to present some findings received through the 
calculations. 
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2 . ASSUMPTIONS AND LIMITATIONS 

In order to simplify the method of analysis many assumptions 
and limitations have been made. The most important principles, 
assumptions and limitations linked with this method are the 
following: 
1. The method is based on the finite element method. The 

elements are unidimensional beam elements. Two- and three­
dimensional states of stress are not examined. 

2. The geometry of the beam grid may be arbitrary (skew, 
rectangular, different lengths of elements, simply support­
ed or continuous beam etc.). However, the cross-section 
of the elements will be rectangular or L- or T-shaped and 
uniform along the entire element. 

3. The load is assumed to be situated in the nodal points of 
the elements as point loads affecting the beam grid plane 
perpendicularly. 

4. Loading will be of short duration, incr~asing monotonously. 
5. The beams are assumed to be underreinforced. The rein­

forcement of the beams shall be known prior to analysis. 
The quantity and location of the reinforcement will not be 
altered during calculation. The stirrups must be vertical 
when used. Otherwise the reinforcement may be arbitrary. 

6. The supports may be clamped or hinged in the direction of 
each degree of freedom. 

7. The member ends may be released. Plastic hinges may arise 
during the calculation at the ends of elements due to the 
yielding of reinforcement. A hinge may be flexural, 
torsional or shear hing~, or a combination of these. 

8. The torque in the elements is assumed to be free in 
character, ie. the cross-section will be warped due to the 
torque. 

9. The plane sections of the beam elements will remain as 
planes in bending. 

10. The shear rigidity of the beams will not be taken into 
account in the formation of the stiffness matrix of the 
beam element. 

11. The creep of concrete will not be taken into the 
consideration. 

3. STRESS-STRAIN CHARACTERISTICS OF CONCRETE AND STEEL 

3.1. Compressed concrete 

The nonlinear stress-strain curve of compressed concrete is 
approximated through the polynom 

The coefficients a 0 ... a 4 are determined according tr, the 

( 1 ) 
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following boundary conditions: 

1 . a C 
::: 0 ' when EC ::: 0 

2 . oc = f' C ' when EC = Ecy 

3. oc = 0 8S·f' 
' C ' 

when EC = £CU ( 2 ) 

do 
4. C 

EC when 0 d€ = £c = 
C 

do 
5 • C 0 when d£ = ' 

E = £.cy 
C 

C 

By enploying the equations 

£ 
C n = --E 
cy 

Ee = 6200 vi7 
C ( 3 ) 

£ = 2,0 %J cy 

E = 3,9 - 0,02 . f' %.> 
CU C 

we derive the stress-strain curves as shown in Fig .. 1a for the 
various strengths of concrete. The stress-strain surves in Fig. 
1a are used in this study for the calculation of the cracking 
and yielding moments of the beam element in pure flexure. 

3 • 2 • Tensioned concrete 

The stress-strain curve of tensioned concrete is approximated 
through the polynom 

The joudary conditions for the determination of coefficients 
b

0 
... b

3 
are the following: 

1 . a 
et = 0 when E = 0 

et 

2 . a 
et = fct when £ et = £ 

cty 

doct 
3 • 
~ = E ' 

when £ = 0 
et 

C et 

(4) 

( 5) 
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4. when E = E 
et cty 

When we employ the equations 

£ et n = --
E cty 

E = 6200 .~ 
C C 

( 6) 

Et =Et = 0,175 ~ C y C U 

f = 0 30 · 3F,°2 et ' C 

we acquire the curves of Fig. 1b between the flexural tensile 
stress and strain of concrete. In the cases involving 
concentric tension, tensile strength is calculated from the 
equation 

fct = 0,25 ( 7) 

The curves shown in Fig. 1b are utilized for the calculation of 
the cracking moment of the beam element in both pure flexure 
and in pure torsion. In determining the cracking shear force 
in pure shear, Eq. (7) is used. 
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Theo-£ curves of compressed (a) and flexurally 
tensioned (b) concrete. 

Steel 

The stress-strain curve of steel is assumed to be in accordance 
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with Fig. 2. In other words, the stee·1 is assumed to be elasto­
plastic material. The strain-hardening is not taken into the 
consideration. 

Fig. 2. 

Eu= 10 o/oo 

The a-£ curves of reinforcement in tension and 
compression. 

4. CRACKING CAPACITY OF REINFORCED CONCRETE BEAM SECTION 

4 . 1 • Pure bending 

The positive flexural cracking moment of a reinforced concrete 
beam section in pure bending is obtained from the equation 

11-opos 

£ 

=fa(£)• C 
C C £ cc 

Ace 

X· dA+ J act(£ct)· 

Act 

Ch-x)·dA + D ·(x-d') + Z ·Cd-x) s s 

£ 
et 

r-:­
cty 

( 8 ) 

The internal stress resultants can be calculated first in normal 
way using equilibrium equation within iteration. The notation 
is clarified in Fig. 3. 



be 

d' 

d 

-
~ 

1"1 
h 

- 6 -

1
L Es ,~ 

f Ecty •f 
:Q.175%0 

Fig. 3 . Stress and strain diagrams of the beam section as the 
cracking of concrete commences in pure flexure. M > 0. 

The negative flexural cracking moment is obtained in the same 
way. The compression is now at the lower edge of the section. 

I~ accordance with Eq. (8), the flexural eracking moment for 28 
test beams were calculated, of which the test results can be 
found in the literature. T~e calculated values were compared 
with the experimentally obtained values. The mean and the 
standard deviation of the ratios M t t /M 1 were O ,970 and roes roca c 0,435, respectively. 

4. 2 • Pure torsion 

The torsional cracking moment is normally calculated approximat­
ely by application of either the theory of elasticity or the 
theory of plasticity. In this investigation, the nonlinear 
method is used. The derivation of the method has been present­
ed in Ref. /1/. The cracking of concrete begins generally at 
the longer edge of the web. At this time, the rigidity of the 
web is assumed to be 60 % of its linearly elastic value, as 
shown by many test results. So we have the equation 

K = 0 60· Ge· (13 - 0,23 h )· 
trw ' 

0,18+ -
bw 

( 9) 

At same time, tr.e rigidity of the flanges is assumed to be 80 % 
of their linearly elastic values. The torsional rigidities of 
the flanges are obtained thereby from the equation 

( 1 0) 
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The total rigidity of the section, when the cracking commences, 
is derived from the equation 

2 

Ktro = k,(Ktrw + f Ktrf) ( 11 ) 

when for the T-section k = 1,15 and for the L and rectangular 
sections k = 1,0. 

The torsional cracking moment in pure torsion for the whole 
section is obtained from the equation 

K 
T = tro. f . W 
ro Y.trw et tpw 

( 1 2) 

The nonlinear torsional resistance of the web Wt is derived to 
be 1,33,Wt' when Wt is calculated a~cording to pw the theory of 
elasticity. Thus we have the equation 

Ktro 
= 1,33· -K--· fct· 

trw 3,0 + 
2,6 

h 
0,45+ -

bw 

( 1 3) 

In the middle of the shorter side of the web, the cracking is 
presumed to start when the torsional moment secures the value 

T' ro 
Ktro O 54 = 1,33· _K __ , fct' ' h . 
trw 1,60 + -

bw 

( 1 4) 

T' 1s the computational torsional cracking moment when exam1n­
ifi~ the combined influence of torsion and bending. 

By utilizing Eq. (13) the torsional cracking moment for 78 test 
beams were calculated, the test results of which could be found 
in the literature. The values calculated were compared to the 
values experimentally obtained. The mean and the standard 
deviation of the ratios T t/T 1 were 0,981 and 0,178 for :t:>otes roca c all beams, 1,011 and 0,121 for T-oeams, 1,025 and 0,193 for L-
beams and 0,922 and 0,206 for rectangular beams, respectively. 

4. 3. Pure shear 

The cracking shear force 1n pure shear is obtained from the 
equation 

vro = f . b • z et w 

fct is obtained from Eq. (7) and z from the equation 

( 1 5) 
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IMro I 
D +D 

S C 

( 16) 

The comparison of the calculational results with the experiment­
al results of 31 test beams found in the literature showed poor 
correspondence. Since cracking shear force is dependent on the 
shear span a as well as on the effective depth d of the beam, 
the better calculational result for V can be obtained from the ro 
equation 

V = (1,0 -
ro 

4,8 
(a) 

d 
29 

a 
-d 

e ). f ·b. 
et w 

( 1 7) 

Eq. (17) has been derived using heuristic curve fitting within 
test results of 31 test beams. Employing Eq. (17), the mean and 
standard deviation of V i t/V 1 -ratios of those test beams roes . roca c 
were 0,988 and 0,193, res ec ive~y. 

4. 4. Combined flexure and torsion 

Cracking appears in concrete due to the combined influence of 
the flexural moment and the torsional moment on the flexurally 
tensioned edge of the section. The flexural stress a and shear 
stress T realize, as cracking begins, the equation 

( 1 8) 

w~en cracking is assumed to appear, as the principal tensile 
stress surpasses the tensile strength of the concrete. When a 
and Tare approximately obtained from the equations 

M 
a r 

fct = M 
. 

ro ( 19) 

T 
Tr 

f = T' 
. 

et 
ro 

we obtain, using Eqs. (18) and (19), the equation 

1 (20) 

Eq. (20) indicates the interaction of the flexural moment Mr and 
the torsional monent Tr' as cracking appears. 

The interaction between the flexural and torsional moments, 
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calculated in accordance with Eq. (20), were compared with the 
test results of 62 test beams found in the literature. For each 
test beam, the left side value of Eq. ~20) was calculated in the 
form Mrtest/~ro~alc + (Trtest/T;ocalc) . The mean and the 
standard aev1at1on of those values were 1,065 and 0,537, 
respectively. 

4. 5 . Combined torsion and shear 

If we assume that the shear stresses caused by torsion and shear 
obtain their maximum value at the same point, and, if we use 
principal tensile stress criterion for cracking, then the 
equation 

is valid. 
We can approximately write the expressions 

Thus we have the equation 

T V r r 1 + - = 
Tro vro 

which shows the interaction of the torsion and the shear, as 
cracking in the concrete begins. 

( 21) 

( 2 2) 

(23) 

The comparison of the calculational results with the test 
results of 69 test beams found in the literature showed, however, 
that the equation 

T 2 T V V 2 
(_.E_) + 0,40· r r + (_£__) = 1 
Tro Tro. Vro Vro 

(24) 

gives better correspondence between calculational and experiment­
al results. The left side value of Eq. (24) was calculated for 
each test beam using ratios Trt st/Tr ·c Jc and Vrtest/Vro al · 
The mean and the standard deviation o~ inose values were 9,062 
and 0,372, respectively. 
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~ . ULTIMATE CAPACITY OF A REINFORCED CONCRETE BEAM SECTION 

In addition to the nonlinear stress-strain curve of concrete 
and to the cracking of concrete, the yielding of reinforcement 
causes nonlinearity in the behaviour of reinforced concrete 
structures. The ultimate capacity of a reinforced concrete 
beam section is defined as the loading which causes the yiel­
ding of the reinforcement. A well-established basis for the 
capacity calculations in combined loading is truss analogy. 
The beams are examined as a space truss, of which the longitud­
inal reinforcement located in the corners of the section and 
the vertical stirrups function as tensioned rods, and the con­
crete between the skew cracks act as diagonal compressed struts. 
The ultimate capacity of flanged beams or of beams having small 
TIM-ratio, as generally in beam grids, calculated in accordance 
with the truss analogy seems apparently to be a little conserv­
ative, however. 

According to truss analogy, the positive flexural capacity is 
obtained from the equation 

M = A f h • yl . 0 uopos s ( 25) 

Thus it is assumed that the internal lever arm z =h. In this 
study, flexural capacity is calculated, applying the 0 notation 
?resented in Fig. 3, from the equation 

M uopos = f 
A cc 

0 (E )• 
C C 

+ Z ·(d-x) s 

£ 
C 

E cc 
x· dA + D •(x-d') s 

( 26) 

M is obtained in the same way. The internal stress result-
aM~Regare obtained within iteration using the equilibrium 
equation of internal forces of the section. 

In pure torsion, the capacity is calculated in accordance with 
truss analogy from the equation 

T = 2 • A • uo 0 (27) 

The shear capacity in pure shear is calculated from the equation 

V = uo 

2·A ·f ·h ·A ·f _ sl yl o st yt 
s 

Under combined bending, torsion and shear, the failure in a 
beam section can occur in accordance with three different 

(28) 
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f,3.ilure models: 

1. The longitudinal reinforcement of the lower edge, as well 
as the stirrups, begin to yield first. Thus, the following 
interactional equation is valid: 

M T 2 V 2 

u + (--u-) + (--u-) 
Muopos Tuo1 Vuo1 

= 1 

Tu01 is derived from the equation 

= 2 • A • 0 

2·As·fy1·Ast·fyt 

uo. s 

and V 1 from the equation uo 

vuo1 = 2 . 
A ·f ·h ·A •f s yl o st yt 

s 

( 2 9) 

(30) 

( 31 ) 

2. The longitudinal reinforcement of the upper edge, as well 
as the stirrups, begin to yield first. Then the following 
interactional equation is valid: 

·M 
u 

M uoneg 

T 2 V 2 
+ (--u-) + (--u-) 

Tuo2 Vuo2 
= 1 

Now we have equations 

2·A'·f ·A ·f 
Tuo2 = 2 . A . s yl st yt 

0 u . s 
0 

A'·f ·h ·A ·f 
V = 2 . s yl o st yt 
uo2 s 

( 3 2) 

(33) 

(34) 

3. The longitudinal reinforcement and the stirrups begin to 
yield first on that side of the section where the shear 
stresses brought about by shear force and the torsional 
moment are parallel. Consequently, the following interac­
tional equation is valid: 

T 
2 

T u (-u-) + --· 
Tuo3 Tuo3 

V u 
-v-· 

uo3 

V 
2 + (--u-) 

~1 + ~· vuo3 

2 

= 1 (35) 
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Tu03 is obtained from Eq. (27) and Vu03 from Eq. (28). 

When employing truss analogy, it is assumed that the reinforce­
ment of the beam carries the entire shear force. It is, however, 
known that also concrete bears part of it. Therefore, in this 
study, the external shear force V in Eqs. (29), (32) and (35) 
is replaced by that part of it wh~ch is carried by the rein­
forcement: in other words by the difference V - V. V is the 
shear capacity of the concrete section, and ituis oBtaingd from 
the equation 

Here 

V = f t · b · z C C W 

z ~ z = uo 
]Muoi 

D +D 
C S 

(36) 

( 3 7) 

and ft is calculated from Eq. (7). If V ~ Vu, then we notate 
V = V, at which point the terms in Eqs.c(29), (32) and (35), 
b~oughi about by shear force, are cancelled. 

6 • RIGIDITY OF A REINFORCED CONCRETE BEAM SECTION 

6 • 1 • Flexural rigidity 

The flexural rigidity of reinforced concrete beam section is not 
constant. Because the flexural rigidity is defined in this 
study by the flexural moment Mand the curvature~ by the 
equation 

<P = M 
Km 

( 3 8) 

flexural rigidity can be examined by the secant of the $-M 
diagram. The ~-M diagram of the reinforced concrete beam section 
is a curved line, in which the initiation of cracking in the 
concrete and tensile steel yielding result in a clear change in 
its direction. The curved line can be approximated, in accord­
ance with the test results, through the trisegmental moment­
curvature relationship as presented schematically in Fig. 4. 
In pure flexure the diagram OA BC is used, and in combined 
loading the diagram OABC is ut~l~z~d. 

Between the points O and A, ~-M diagram is curved in such a way 
that K diminishes rectiliRearly from the value K to the value 
~ aW M advances from zero to the value M . TW~ lines A B , 
3m~o B d · h 1· · ro h h t· 0 0 

c A an BC are straig t ines, assuming tat t era 10 
~

0
:

0 T : V·d remains unchanged during loading. 
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The reinforced concrete beam curvature-flexural moment 
model used in this study, presented schematically. 
Pure flexure----, combined flexure, torsion and 
shear - - - - . 

6.2. Torsional rigidity 

The torsional rigidity is defined as the secant rigidity. Thus 
we have the equation 

e = (39) 

analogously with the flexural rigidity. Therefore, the torsion­
al rigidity can be examined by the 0-T diagram, when 0 is the 
twist and T the torsional moment. In this investigation, the 
calculation of the torsional rigidity is founded on the diagram 
0-T schematically delineated in Fig. 5. The diagrams 0-T in 
Fig. 5 are trisegmental in same way as the diagrams ~-Min Fig. 
4. The line OA in Fig. 5 is curved in such a way that Kt 
diminishes rect~linearly f~om the value Kt to the value Ktro 
as e increases from zero to the value e .e 

ro 
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The reinforced concrete beam twist-torque curve model 
used in this study, presented schematically. Pure 
torque----, combined flexure, torsion and shear 

As the first cracks in a section appear, flexural or shear 
cracks, a fold is formed in the point A or A at the same time 
both in the ~-M curve and in the 8-T cu~ve. The fold B or B 
in both curves is formed at the same time as the yieldigg of 
reinforcement begins according to any failure model. 

7 • METHOD OF ANALYSIS 

The analysis of beam grids in this study is founded on thefinite 
element method. The beam parts between the junction points of 
the beams are viewed as unidimensional beam elements. The degrees 
of freedom and coordinate systems of an element are presented in 
Fig. 6. 

Fig. 6. 

X 

v• ' 
2 ,"'2 

x· 

A beam element, its degrees of freedom and systems of 
coordinates. 
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The external load is augmented at the joints in stages. At each 
loading stage, the displacements and force quantities are calcu­
lated through iteration using matrix equation 

Q = K · 6 (40) 

The stiffness matrix of the structure is calculated anew after 
each iteration as a function of the displacements and force 
quantities obtained during the preceeding iteration cycle. The 
principle of virtual work, shape function and numerical integrat­
ion are used in calculation of the stiffness matrix K. The 
secant rigidity is used for the stiffness of the structure. 

The convergence of iteration is audited using the inequation 

1 
12. n · + 

t+1F! _ 
l 

E ( 41) 

If the Ineq. (41) is invalid the values below are given to the 
nodal point displacements and forces in reference to the follow­
ing cycle of iteration 

t+16! = 0, 7 5 · to! + 0, 2 5 · t+16! 
l l l 

(42) 

t+1F! = 0, 7 5 · tf! + 0, 2 5 · t+1F! 
l l l 

As the loading increases, the reinforcement begins to yield pro­
ducing plastic hinges. In the calculation procedure used in 
this study, the hinges can be formed at the member ends only. 
They can be flexural, torsional qr shear hinges or combinations 
of these. Finally, due to the plastic hinges, the structure 
becomes a mechanism and the yield load has been achieved. 

The course of calculations in its entirety is demonstrated in 
the form of a block diagram, as follows: 
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Input 

t I t I 

Calculate &i and Fi 

Form tK. 
l 

All elements? 

yes 

t+l I t+l I 

Calculate oi and """Fi 

yes 
Test< e: ? 

t = t + 1 

no 

i = i+l 

no 

Loads 
increased? 

yes 

End 

COMPARISON OF EXPERIMENTAL AND THEORETICAL VALUES 

In order to test the method of analysis, a test beam grid was 
made and loaded in connection of this study, the structure and 
loading system of which are outlined in Ref. /1/. The deflect­
ions of the joints of that beam grid are presented in Fig. 7. 
We can notice that the calculational results concerning deflect­
~ons and yield load are partly conservative. 
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4 6 8 
a mm 
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320,---,---,-----,-----.------,-----.----,---,­ 320 
Q 
kN 
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kN 
240 

-- - - -1- -
- I 

160 

80 Joint 7 , 

0 
4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 

a mm a mm 

The deflections experimentally and theoretically 
obtained for the joints of the test beam grid, as a 
load function. Test ---- , nonlinear theory - - - -, 
linear elasticity theory-·~·-· 

In Refs. /2/ and /3/, test results of some T-shaped structures 
consisting of a floor beam and a spandrel beam are reported. 
The torsional moment~ generated in the spandrel beams, was 
measured in the tests. In Figs. 8 and 9, the calculated torque 
is compared with the experimental observation. The calculated 
yield load is noticed to be clearly smaller than the yield load 
in the tests. 

200.--------,,------,-----t-----:r----r------t 

Q 
kN 

01£. __ _1_ __ __J,L_, __ ..J._ __ ___1... __ -::~---:: 

O 2, 5 5,0 7,5 10,0 12,5 15,0 
T kN ·m 



Fig. 8. 

Fig. 9 • 
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The e xperimentally and theoretically obtained torsion­
al moment of a spandrel beam proper to test specimens 
SA-1 and SA-2 /2/, as a function of load. 
Test----, theory - - - - . 

200,-----r-----t----.-----r------r--~ 
Q 

kN 

100 

2 4 6 8 10 12 14 

T kN·m 

The experimentally and theoretically obtained torsion­
al moment of the spandrel beam of test specimens A1 
and A2 /3/, as a function of load. Test 
theory - - -

Rechardt & Tiira have loaded some cross-sectionally rectangular­
shaped, simply supported beams /4/. Torsion consequently did 
not appear in the beams. The midpoint deflection of the beams 
was measured. In Fig. 10, the calculated deflections are compared 
with the curves obtained experimentally. The correspondence 
between the theoretical and experimental deflections is very 
good. 
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Fig. 10. The experimentally and theoretically obtained mid­
point deflections of four test beams, as a function 
of relative load. Test , theory - - - - . 

9 . CONCLUSIONS 

Although, in developing the calculation method, many simplifi­
cations and approximations have been made, the calculational 
findings correlate rather well with the test results. In many 
cases, however, the calculated results seem to be conservative, 
mainly due to the multidimensionality of the structure, second­
ary stresses, biaxial stress state in the slab and ideal-plastic 
hinges. The disparities obtained among the displacements in 
calculation and experiment, under the working load, are practic­
ally non-existent. The cracking in the concrete appears to 
start in harmony with the suggested calculation model. 

The effect of torque on the behaviour of a beam grid is appar­
ently very minimal. In reality, the torsion would be treated 
as restrained in character. In considering practical require­
ments, the compatibility torsion in the beam grids may be 
ignored, as confirmed frequently in the literature. So the 
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analysis would be simplified significantly. 

The computation time is increased by the fact that the stiffness 
matrix of the structure is renewed, and the set of equilibrium 
equations are resolved during each iteration cycle. If the 
accuracy of iteration is about 0,03, the number of integration 
points in an element is 5 ... 7 and if the load increment is about 
10 % from the yield load, the number of calculation cycles can 
be kept moderate. 
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SYMBOLS 

Scalars 

Ace' Act 
A A' s' s 

K K mro' tro 

a 

bf 
b o' h 

0 

f' 
C 

fyl' fyt 

l 

n 

s 

t 

u 
0 

E 

01 

Tt 
T 

V 
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area of compressed or tensioned section 

area of longitudinal reinforcement of the lower or 
upper edge of the section 

area of longitudinal reinforcement 

area of stirrup 

area of polygon formed by the centres of gravity of 
the longitudinal stringers located in the corners 
of the section 

flexural or torsional rigidity of section according 
to theory of linear elasticity 

flexural or torsional rigidity of section as 
cracking begins in the concrete in pure flexure or 
in pure torsion 

deflection; shear span 

width of flange in torsion 

horizontal or vertical distance between centres of 
gravity of the stringers located in the corners of 
section 

cylinder strength of concrete 

yielding strength of longitudinal or transverse 
reinforcement 

subscript-indicates load increment 

number of elements of the beam grid 

stirrup spacing 

superscript-indicates iteration cycle during one 
load increment 

circumference of the area A
0 

strain; accuracy of iteration 

principal tensile stress of concrete 

shear stress brought about by torsion 

shear stress brought about by shear 

Vectors and matrices 

F'' F' 

K 

k'' k 

force vector of element in local or global system 
of coordinates 

secant stiffness matrix of beam grid 

stiffness matrix of element in local or global 



Q 

A 

& I' 6 

- 22 ·-

system of coordinates 

load vector of beam grid 

displacement vector of beam grid 

displacement vector of element in local or global 
system of coordinates 
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